WARNING

Exhaust gasses contain Carbon Monoxide, an odorless and colorless gas. Carbon Monoxide is poisonous and can cause unconsciousness and death. Symptoms of Carbon Monoxide exposure can include:

- Dizziness
- Nausea
- Headache
- Weakness and Sleepiness
- Throbbing in Temples
- Muscular Twitching
- Vomiting
- Inability to Think Coherently

IF YOU OR ANYONE ELSE EXPERIENCE ANY OF THESE SYMPTOMS, GET OUT INTO THE FRESH AIR IMMEDIATELY. If symptoms persist, seek medical attention. Shut down the unit and do not restart until it has been inspected and repaired.

A WARNING DECAL is provided by WESTERBEKE and should be fixed to a bulkhead near your engine or generator. WESTERBEKE also recommends installing CARBON MONOXIDE DETECTORS in the living/sleeping quarters of your vessel. They are inexpensive and easily obtainable at your local marine store.

CALIFORNIA PROPOSITION 65 WARNING

Marine diesel and gasoline engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Installation Codes and Safety Standards</td>
<td>2</td>
</tr>
<tr>
<td>Recommended Reading</td>
<td>2</td>
</tr>
<tr>
<td>Product Software</td>
<td>3</td>
</tr>
<tr>
<td>Notes, Cautions and Warnings</td>
<td>3</td>
</tr>
<tr>
<td>Inspection of Shipment</td>
<td>3</td>
</tr>
<tr>
<td>Engine Location and Mounting</td>
<td>4</td>
</tr>
<tr>
<td>Engine Location</td>
<td>4</td>
</tr>
<tr>
<td>Engine Bed</td>
<td>4</td>
</tr>
<tr>
<td>SSB Radio/Electronic Grounding</td>
<td>4</td>
</tr>
<tr>
<td>Engine Mounting</td>
<td>5</td>
</tr>
<tr>
<td>Generator Location and Mounting</td>
<td>6</td>
</tr>
<tr>
<td>Generator Location</td>
<td>6</td>
</tr>
<tr>
<td>Generator Mounting</td>
<td>6</td>
</tr>
<tr>
<td>SOUND GUARD</td>
<td>7</td>
</tr>
<tr>
<td>Rigging and Lifting</td>
<td>8</td>
</tr>
<tr>
<td>Propeller Shaft Alignment</td>
<td>9</td>
</tr>
<tr>
<td>Propeller Shaft Coupling (Engines)</td>
<td>9</td>
</tr>
<tr>
<td>Flexible Couplings</td>
<td>9</td>
</tr>
<tr>
<td>Alignment</td>
<td>10</td>
</tr>
<tr>
<td>Propeller Selection</td>
<td>11</td>
</tr>
<tr>
<td>Exhaust System/ABYC Standards</td>
<td>11</td>
</tr>
<tr>
<td>Exhaust System Installation</td>
<td>12</td>
</tr>
<tr>
<td>Recommended Guidelines</td>
<td>12</td>
</tr>
<tr>
<td>Check Valves</td>
<td>14</td>
</tr>
<tr>
<td>Exhaust Back Pressure</td>
<td>14,16</td>
</tr>
<tr>
<td>Water Separator Exhaust Systems</td>
<td>15</td>
</tr>
<tr>
<td>Dry Stack Exhaust Systems</td>
<td>15</td>
</tr>
<tr>
<td>Exhaust Hose</td>
<td>16</td>
</tr>
<tr>
<td>Exhaust Elbow</td>
<td>17</td>
</tr>
<tr>
<td>Precautions</td>
<td>18</td>
</tr>
<tr>
<td>Electrical System</td>
<td>19</td>
</tr>
<tr>
<td>DC Electrical Connections</td>
<td>19</td>
</tr>
<tr>
<td>Control Panels for Propulsion Engines</td>
<td>19</td>
</tr>
<tr>
<td>Diesel Generator Instrument Panels</td>
<td>19</td>
</tr>
<tr>
<td>Optional Instrument Panel (Gasoline Generators)</td>
<td>19</td>
</tr>
<tr>
<td>Optional Remote Start/Stop Panel (Diesel and Gasoline Generators)</td>
<td>19</td>
</tr>
<tr>
<td>Optional Remote Start/Stop Panel (Gasoline Generators)</td>
<td>19</td>
</tr>
<tr>
<td>D-Net Control Panels</td>
<td>21</td>
</tr>
<tr>
<td>Control Wiring</td>
<td>20</td>
</tr>
<tr>
<td>AC Wiring (Generators)</td>
<td>20</td>
</tr>
<tr>
<td>Batteries</td>
<td>20</td>
</tr>
<tr>
<td>D-Net Control Panels</td>
<td>21</td>
</tr>
<tr>
<td>Admiral Control Panel</td>
<td>22</td>
</tr>
<tr>
<td>Captain Control Panel</td>
<td>23</td>
</tr>
<tr>
<td>Fuel System</td>
<td>24</td>
</tr>
<tr>
<td>Fuel Tanks – General</td>
<td>24</td>
</tr>
<tr>
<td>Fuel Tanks – Gasoline</td>
<td>24</td>
</tr>
<tr>
<td>Fuel Tanks Located Above The Engine/Generator</td>
<td>25</td>
</tr>
<tr>
<td>Fuel Tanks Located Below The Engine/Generator</td>
<td>25</td>
</tr>
<tr>
<td>Gasoline Engine Fuel Tanks</td>
<td>25</td>
</tr>
<tr>
<td>Diesel Fuel System Anti-Siphon Devices</td>
<td>25</td>
</tr>
<tr>
<td>Dual Purpose Fuel Tank</td>
<td>26</td>
</tr>
<tr>
<td>Fuel Lines</td>
<td>26</td>
</tr>
<tr>
<td>Rigid Fuel Lines</td>
<td>26</td>
</tr>
<tr>
<td>Flexible Fuel Lines</td>
<td>26</td>
</tr>
<tr>
<td>Shut-Off Valves</td>
<td>27</td>
</tr>
<tr>
<td>Fuel Filters</td>
<td>27</td>
</tr>
<tr>
<td>Fuel</td>
<td>27</td>
</tr>
<tr>
<td>Cooling System</td>
<td>28</td>
</tr>
<tr>
<td>Raw Water Intake</td>
<td>28</td>
</tr>
<tr>
<td>Raw Water Outlet</td>
<td>28</td>
</tr>
<tr>
<td>Fittings</td>
<td>28</td>
</tr>
<tr>
<td>Coolant Recovery Tank</td>
<td>29</td>
</tr>
<tr>
<td>Coolant</td>
<td>29</td>
</tr>
<tr>
<td>Engine Oil</td>
<td>30</td>
</tr>
<tr>
<td>Oil Specifications</td>
<td>30</td>
</tr>
<tr>
<td>Oil Drain Hose</td>
<td>30</td>
</tr>
<tr>
<td>Oil Dipstick</td>
<td>30</td>
</tr>
<tr>
<td>Pressure Sensing Devices</td>
<td>30</td>
</tr>
<tr>
<td>Relocating Engine Parts</td>
<td>30</td>
</tr>
<tr>
<td>Remote Oil Filter</td>
<td>31</td>
</tr>
<tr>
<td>Installation</td>
<td>31</td>
</tr>
<tr>
<td>Ventilation</td>
<td>32</td>
</tr>
<tr>
<td>Water Heater Connections</td>
<td>33</td>
</tr>
<tr>
<td>Installation</td>
<td>33</td>
</tr>
<tr>
<td>Transmission</td>
<td>34</td>
</tr>
<tr>
<td>Transmission</td>
<td>34</td>
</tr>
<tr>
<td>Shipment</td>
<td>34</td>
</tr>
<tr>
<td>Fluid</td>
<td>34</td>
</tr>
<tr>
<td>Control Cables - ZF</td>
<td>34</td>
</tr>
<tr>
<td>Borg Warner Velvet Drive</td>
<td>35</td>
</tr>
<tr>
<td>PRM Newage 80/100</td>
<td>36</td>
</tr>
<tr>
<td>Installation - Final Check</td>
<td>38</td>
</tr>
<tr>
<td>Metric Conversion Chart</td>
<td>39</td>
</tr>
<tr>
<td>Wire Sizing Chart</td>
<td>40</td>
</tr>
</tbody>
</table>
This marine Installation Manual covers all WESTERBEKE Engine and Generator models, both diesel and gasoline. The purpose of this manual is to provide boatyards and installers who are already familiar with installation procedures, additional detailed installation instructions to ensure the safest and most efficient operating conditions. These instructions may vary due to the many WESTERBEKE Engines and Generators available and the diversity of boat designs.

Proper location and installation of the engine or generator in the vessel are of prime importance. Factors in the installation that must be considered are:

1. **Ventilation**, to provide air for engine combustion and to remove heat produced by the engine/generator while operating.
2. **Exhaust System**, to properly discharge cooling water, quiet the exhaust, and expel exhaust gas. Install a siphon-break.
3. **Cooling Water Supply**, to cool the engine with a continuous flow of filtered raw water.
4. **Fuel System**, to provide an unrestricted fuel supply and properly filtered fuel to the fuel pump.
5. **Electrical Connections**, both AC and DC and proper grounding.
6. **Transmission Propeller Connections** (Engines only)

Please read this manual carefully and observe the safety precautions. Should your engine or generator require servicing, contact your WESTERBEKE dealer. For Serial Number location, Decal information or Parts Ordering information, refer to your WESTERBEKE Operators Manual.

INSTALLATION CODES AND SAFETY STANDARDS

Recommended publications concerning Safety Codes and standards are listed in this safety section. Following is a summary of what these standards include. Both the U.S. Code (USC), which are the laws passed by Congress, and the Code of Federal Regulations (CFR), which are agency-generated rules, contain pertinent information.

Title 46 Chapter 43 of the USC applies specifically to recreational vessels. It gives the Secretary of Transportation the authority to set the standards for boats that are manufactured and operated in the United States. It also spells out the penalties for violation of the standards.

According to **Title 46 USC 4307**, a person may not manufacture, construct, assemble, offer for sale, introduce into interstate commerce, or import into the United States any recreational vessel that does not comply with the federal regulations. Any associated equipment or component used on one of these vessels must also be in compliance. Further, a person is prohibited from operating any vessel that does not comply with the regulations.

Within the CFRs are the detailed requirements applicable to boats with gasoline engines. The majority of requirements pertinent to recreational vessels are contained in **33 CFR Part 183**.

- **Subpart I—Electrical Systems 183.401–183.460**
- **Subpart J—Fuel Systems 183.501–183.572**
- **Subpart K—Ventilation 183.601–183.630**

Standards for marine carburetors and the requirements for the backfire flame arrester are contained in **46 CFR Subparts 25.35 and 58.10**. Also within **Subpart 58.10** are the exhaust manifold and exhaust system requirements for both gasoline and diesel engine installations. Several publications that address these federal mandates, making compliance easier, include:

- The USCG Fuel System, Electrical System and Ventilation Compliance Guidelines
- The USCG Safety Standards for Backyard Boat Builders
- The ABYC Standards and Recommended Practices for Small Craft

The ABYC Standards Manual is the most comprehensive and widely used reference. ABYC constantly revises and updates its “projects,” as it calls each topic section. The manual is easy to read and quite detailed. Adherence with these standards will put the recreational boater in compliance with federal mandates. Anyone considering installing an engine or generator should start with a thorough review of these standards:

- **H-2-Ventilation of Boats Using Gasoline**
- **H-32-Ventilation of Boats Using Diesel**
- **H-24-Gasoline Fuel Systems**
- **H-33-Diesel Fuel Systems**
- **P-1-Installation of Exhaust Systems for Propulsion and Auxiliary Engines**
- **P-4-Marine Inboard Engines and Transmissions**
- **E-11-AC and DC Electrical Systems for Boats**

USCG “inspected vessels,” especially those carrying passengers for hire, are required to meet even more stringent standards than those discussed above. A very thorough review of the applicable CFRs is necessary before the Coast Guard arrives for their inspection.

Recommended Reading

For added information on installing Marine Engines and Generators, WESTERBEKE recommends the following books:

- Elements of Yacht Design – Skene
- Marine Engines – Calder
- The Propeller Handbook – Gerr
INTRODUCTION

PRODUCT SOFTWARE

Product software, (tech data, parts lists, manuals, brochures and catalogs) provided from sources other than WESTERBEKE are not within WESTERBEKE’s control. WESTERBEKE CANNOT BE RESPONSIBLE FOR THE CONTENT OF SUCH SOFTWARE, MAKES NO WARRANTIES OR REPRESENTATIONS WITH RESPECT THERETO, INCLUDING ACCURACY, TIMELINESS OR COMPLETENESS THEREOF, AND WILL IN NO EVENT BE LIABLE FOR ANY TYPE OF DAMAGE OR INJURY INCURRED IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING OR USE OF SUCH SOFTWARE.

WESTERBEKE customers should also keep in mind the time span between printings of WESTERBEKE product software and the unavoidable existence of earlier WESTERBEKE manuals. In summation, product software provided with WESTERBEKE products, whether from WESTERBEKE or other suppliers, must not and cannot be relied upon exclusively as the definitive authority on the respective product. It not only makes good sense but is imperative that appropriate representatives of WESTERBEKE or the supplier in question be consulted to determine the accuracy and currentness of the product software being consulted by the customer.

NOTES, CAUTIONS AND WARNINGS

As this manual takes you through the installation procedures for your engine/generator, critical information will be highlighted by NOTES, CAUTIONS, and WARNINGS. An explanation follows:

NOTE: An operating procedure essential to note.

⚠️ CAUTION: Procedures which, if not strictly observed, can result in the damage or destruction of your engine.

⚠️ WARNING: Procedures which, if not properly followed, can result in personal injury or loss of life.

INSPECTION OF SHIPMENT

The engine/generator is shipped from the factory securely mounted and properly crated. Accessory equipment is shipped in a separate small box, usually packed within the engine’s crate.

Before accepting shipment of the engine from the transportation company, the crate should be opened and the contents inspected for damage. If there is either visible or concealed damages, you should require the delivery agent to write “Received in damaged condition” on the delivery receipt. Also compare the contents of the shipment against the packing list and make sure that any discrepancies are properly noted. This is your protection against loss or damage. Claims concerning loss or damage must be made to the carrier, not to WESTERBEKE Corporation.

NOTE: For safety reasons, the engine is NOT filled with lubricating oil for shipment. Before leaving the factory, however, each engine/generator is thoroughly tested with oil in its engine. This testing, among other things, provides all internal parts with a coating of oil. This oil acts as a preservative, providing reliable protection against corrosion for at least one year if the engine/generator is properly stored.

NOTE: A carbon monoxide warning decal has been provided by WESTERBEKE. Affix this decal in a visible position in the vessel’s living quarters.
ENGINE LOCATION AND MOUNTING

ENGINE LOCATION

The overall layout of the engine room should be planned for easy inspection, servicing, and handling of the engine. Thoroughly study all the equipment to be installed and make a paper plan to provide optimum engine room space. Consider the following:

1. Ventilation – Since an increase in engine room temperature causes a reduction in the intake air and thus a drop in engine output, ventilation inside the engine room must be ample. See your Operators Manual for the ventilation requirements for your engine/generator.
 a. Dimension and capacity with a ventilator installed
 b. Dimension and capacity with an intake duct installed

2. Engine Room Height – For engines having a top oil fill, the distance from the oil cap at the top of the rocker cover to the overhead must be enough that oil can easily be added.

3. Space to move the propeller shaft flange – Allow approximately 3 - 4 in (7.7 - 10.0 cm) of space to move the flange toward the stern for changing the transmission, etc.

4. Exhaust System – Make sure there is adequate space for all exhaust system components, including the exhaust silencer.
 Refer to EXHAUST SYSTEM INSTALLATION in this manual.

ENGINE BED

A strong mounting bed contributes to the satisfactory alignment and operating of the engine. The bed must be rigidly constructed, and neither deflect nor twist when it is subjected to the engine’s weight or to the pressures that the boat may experience while operating in rough seas. The bed must be strong enough to keep the engine’s alignment within one or two thousands of an inch at all times. The bed has to withstand the forward push of the propeller shaft. It is also critical that the beds are parallel to one another and to the line of the propeller shaft when viewed from above. They also must be offset an equal distance from the line of the propeller shaft.

In fiberglass hulls, we recommend that solid wooden support stringers similar to those in wooden hulls be formed and fitted, then glassed securely to the hull. This will allow the hanger bolts to be installed firmly in the wood, thereby reducing noise and transmitted vibration.

The stringers must be as wide or wider than the engine mounting isolator. Avoid excessive height. Isolator overhang and/or rounded stringer surfaces are detrimental to the flexible mounts’ ability to retain vibration.

Supports between the bed stringers and supports extending at right angles from the stringers to the hull may be required for proper strength and to aid in the absorption of vibrations.

The engine bed must be constructed so that a wrench can be set at the engine base to retighten the engine mounting bolts at the mounting feet.

Many boat manufacturers are now providing preformed fiberglass mounting beds for their engine installations. These beds, when used, should be of sufficient thickness for proper support and should be well-glassed to the hull when installed.

Avoid the temptation to install the engine on a pair of angle irons glassed in place. Such a construction will allow vibration to pass through to the hull. Flexible engine mounts require a firm foundation.

When preparing the engine load, also plan out and build an engine drip pan. To simplify cleaning up after oil changes, consider a separate drip pan for use under the oil and fuel filters.

SSB RADIO/ELECTRONIC GROUNDING

If your boat needs a ground plane for a radio and other electronic gear, this is the ideal time to bond a substantial area of copper mesh into the base of the engine space while it is accessible.
ENGINE LOCATION AND MOUNTING

ENGINE MOUNTING

Bronze or stainless steel hanger bolts of appropriate size are recommended for use through the engine's flexible mounts. Less preferred are lag screws because their hold on the wood is weakened every time they are moved, whereas hanger bolts stay in position. If the nut on top of the hanger bolt is removed to allow the engine to be lifted, the hanger bolt itself remains in place as a stud. Consequently, the bond between the hanger bolt and the wood is not weakened by the removal of the nut or the engine.

To screw a hanger bolt onto a stringer, thread two nuts onto the hanger bolt, jam them together, then turn the hanger bolt into the stringer using a wrench on the uppermost nut.

The engine's mounting angle cannot exceed 15° from the horizontal plane. Refer to the specification section in your operating manual for the angle limit of your engine.

NOTE: There are various transmissions that provide down angle output flanges to help in positioning the engine on a more level plane.
GENERATOR LOCATION

A solid, level mounting platform is very important for the proper operation of your generator. Select a location that will allow adequate space on all sides for ventilation and servicing, preferably on, and parallel with, the keel or vessel center line. Keep the generator away from living quarters, and away from bilge splash and vapors.

Make sure there is room to access the following service points:

- Negative and positive battery connections
- Fuel inlet and outlet connections
- Oil fill and oil drain hose
- Raw water inlet and outlet
- Location of the (owner supplied) fuel/water fuel filter.

A generator will rock on its mounts in rough seas, therefore clearance is necessary on all sides. Larger generators require up to a three-inch (76mm) clearance.

Avoid supporting the generator from bulkheads which can create drumming effects and transmit noise and vibration throughout the boat.

Generator location is preferable in the same room or compartment as the propulsion engine, as this is usually a well ventilated area, insulated, close to the fuel supply and the center of the electrical load distribution. However, a generator cannot be installed in the propulsion engine compartment unless specific conditions are met.

USCG regulation 33CFR183 pertains to gasoline fuel systems, and requires a generator operating in a gasoline fuel environment to be “ignition protected.” This means a generator capable of operating in an explosive environment without igniting that environment. Properly installed and operated, a WESTERBEKE gasoline generator can operate in an explosive environment.

A WARNING: Gasoline fire or explosion can result in severe personal injury or death. Do not install a gasoline generator in the same room or compartment as a diesel engine or generator. The diesel unit may not be ignition protected and may ignite gasoline fumes. Be sure a gasoline generator is installed in its own room or compartment on a diesel powered boat.

Do not install a diesel generator in the same room or compartment as a gasoline engine.
There are custom designed sound enclosures for each model of WESTERBEKE generators. The Sound Guard is a rigid, attractive, easy to clean enclosure that reduces the generator noise to a pleasant hum. The enclosure can be assembled easily in close quarters.

Quick action fittings allow for easy access for inspection or routine maintenance of the generator. If major repairs are needed, all the panels can be disassembled in a few minutes. No tools required.

Sound Guard is pre-packaged with the skirt and base assembled to assure a safe arrival and easy assembly. WESTERBEKE provides the necessary fittings and connecting hoses for water, exhaust, fuel and battery attachments and easy to follow assembly instructions.

When ordering a new generator (diesel only) it can be ordered installed in an assembled Sound Guard as a package for ease of installation.

For a quiet, dependable sound enclosure, contact your WESTERBEKE dealer.
The engine/generator is fitted with lifting eyes. Attach wire rope or chain slings capable of supporting the engine/generator's weight to the eyes and lift the engine/generator by means of tackle attached to these slings. The lifting eyes have been designed to carry the full weight; auxiliary slings are not necessary.

⚠️ WARNING: Sling must NOT be so short as to place stress on the lifting eyes. A sling must be long enough so that its angle to the vertical plane does not exceed 10°.

The general rule in moving an engine/generator is to ensure that all equipment used is adequately strong and firmly fixed in place. Move the engine/generator a little at a time and make sure it is firmly supported. Eliminate the possibility of accidents by avoiding haste. Do not lift by the crankshaft pulley.

⚠️ WARNING: Make certain all personnel stand clear during lifting and lowering operations.

In certain situations it may be necessary to lift the engine/generator in positions other than the horizontal position. Certain situations require it to be lowered endwise through a small hatchway which cannot be made larger. If the opening of the hatchway is extremely small, it is possible to reduce the outside dimensions of the engine/generator by removing external components such as the cooling system piping, the heat exchanger, certain filters, the mounting rails (on generators) and other obstructive components. These should be removed by a competent mechanic and special care should be taken to avoid damage to any exposed parts. Be careful not to allow dirt to enter any openings created by the removal of equipment. Reinstall the components in their original positions after the engine is in its installation area. Replace gaskets as needed for the parts that were removed.

If it becomes necessary to hoist the engine/generator front-end (pulley/drive belt end) upwards or rear-end (flywheel/generator end) upwards, the attachment of lifting slings must be done carefully to avoid damaging the parts on which the weight of the slings may bear.

NOTE: Rigging work is best done by someone experienced and competent in handling heavy machinery.
PROPELLER SHAFT ALIGNMENT

PROPELLER SHAFT COUPLING (Engines)

A propeller shaft half-coupling is available for all engine models. It is bored to shaft size for the specific order, and has either a keyway with set screws and two locking bolts, or is of the clamping type with a keyway.

This coupling is carefully machined to allow a slight forced-fit onto the shaft and to make an accurate mating surface between the coupling and the output flange of the transmission.

The forward end of the propeller shaft has a long straight keyway. Any burrs should be removed from the shaft's end. The coupling should be a light drive fit onto the shaft, and the shaft should not have to be scraped down or filed in order to get a fit. It is important that the key be properly fitted to both the shaft and to the coupling. The key should fit the side of the keyway closely but should not touch the top of the keyway in the hub of the coupling.

If driving the coupling over the shaft is difficult, the coupling can be expanded by heating it in a pail of boiling water. The face of the propeller coupling must be exactly perpendicular to the center line (axis) of the propeller shaft. Have a machine shop fit the coupling and face the coupling so that the mating surface of the flange is at a perfect right angle to the propeller shaft.

After driving the coupling over the shaft, remove the two locking bolts from the coupling and countersink the shaft below each locking bolt hole. Insert and tighten the two bolts, then wire the two bolt heads together with stainless wire. This will secure the coupling to the shaft. For additional security a stainless hose clamp can be tightened around the coupling shoulder and over the two bolt heads.

FLEXIBLE COUPLINGS

A flexible coupling or a "drive saver" can be installed between the WESTERBEKE shaft coupling and the transmission coupling to reduce vibration and absorb thrust and torque. This is an important consideration when using flexible engine mounts. Follow the manufacturers' recommendations and instructions.

DRIVESAVER is a product of Globe Marine, Rockland, MA.

These illustrations show typical propeller shaft installations with variations on stuffing boxes and stern tubes. The propeller shaft on the boat with the spade rudder is supported by the stern tube. An external strut supports the shaft on the other boat.
ALIGNMENT

The engine must be exactly aligned with the propeller shaft. No matter what material is used to build a boat, the material will be flexible to some extent. The boat’s hull will change its shape to a greater extent than is usually realized when the boat is launched and operated in the water. Therefore, it becomes extremely important to check the engine’s alignment at frequent intervals and to correct any errors when they appear.

Misalignment between the engine and the propeller shaft often creates serious problems which are often blamed on other areas suspected of causing the trouble. Misalignment will cause excessive bearing wear, rapid shaft wear, and will, in many cases, reduce the life of the boat’s hull by loosening the hull’s fastenings. A bent propeller shaft will produce these same effects, therefore a perfectly straight propeller shaft is absolutely necessary. One result of misalignment may be leakage of transmission oil through the transmission’s rear oil seal. If oil should leak from this seal, check and make sure that the alignment is within the limits prescribed.

Never attempt a final alignment when the boat is on land. The boat should be in the water and have had an opportunity to assume its final water form. The propeller shaft/transmission coupling alignment is best performed with the fuel and water tanks about half full, with all the usual equipment on board, and, on sailboats, after the mainmast has been stepped and the final rigging has been installed. Take sufficient time to make this alignment — don’t be satisfied with less than perfect results.

The alignment is correct when the propeller shaft can be easily slipped backward and forward into the counterbore, and when a feeler gauge indicates that the flanges come together at all points. The alignment between the propeller shaft half-coupling and the transmission half-coupling can contain an error no greater than .001 in (.25 mm) per inch of the coupling diameter. For example, if your propeller shaft half-coupling is 3” (76mm) in diameter, the maximum error that can be allowed in the alignment is .003 in (.076mm).

In making the final check for alignment, the transmission half-coupling should be held in one position and the alignment with the propeller shaft half-coupling tested with the propeller shaft half-coupling in each of four positions A, while rotated 90° between each position. This test will also check whether the propeller shaft half-coupling is in exact alignment on its shaft. Then, keeping the propeller shaft half-coupling in one position, the alignment should be checked by rotating the transmission half-coupling in 90° increments, checking dimension A while in each 90° position until it has been rotated full-circle.

The engine’s alignment should be rechecked after the boat has been in service for one to three weeks and, if necessary, the alignment performed again. Usually it will be found that the engine is no longer in alignment. This does not mean that the first alignment has been done improperly, rather, it means that the boat has taken some time to take its final shape and that the engine’s bed and stringers have probably absorbed some moisture. It may even be necessary to realign the coupling halves again at a later time.
PROPELLER SELECTION

The type and size of propeller varies with the gear ratio and must be selected to fit the application, based upon boat tests. To utilize the full power of the engine and to achieve ideal loading conditions, use a propeller which will permit the engine to reach its full rated rpm at full throttle while under a normal load and while the boat is moving forward through the water.

The following information is needed to calculate and match a marine propeller to a boat.

a. The engine output in hp.
b. The maximum rpm of the engine.
c. The reduction of the transmission.
d. The maximum hull speed of the boat.
e. The type of boat and its displacement.
f. The waterline length (LWL).

Most propeller shops now have computer programs that will analyze all this data and select the propeller choices in number of blades, diameter and pitch. In-water testing however, is always the final answer.

EXHAUST SYSTEM/ABYC STANDARDS

Preparations to install an engine or generator set should begin with a thorough examination of the ABYC standards. The following sections in the ABYC standards pertaining to Exhaust Systems are of particular interest:

- P-1—Exhaust Systems
- TH-22—Educational Information about Carbon Monoxide

The engine exhaust system(s) should comply with the requirements of ABYC P-1, Installation of the Exhaust Systems for Propulsion and Auxiliary Machinery. See ABYC TH-23, Design, Construction and Testing of Boats in consideration of Carbon Monoxide.

Selecting the appropriate terminus (i) location may vary depending upon the specific design of the boat. ABYC P-1, Exhaust Systems.
RECOMMENDED GUIDELINES

These guidelines dated July 2013 supersede all previous guidelines published by Westerbeke Corporation for all types of exhaust systems. Water intrusion is not covered by Westerbeke warranty because it is not caused by a product defect. Please study these guidelines carefully before planning your exhaust system installation.

Throughout these guidelines our use of the word “engine” is generic, it refers equally to either a propulsion engine or to the engine driving a generator set, sea water and raw water are the same.

Beyond conveying exhaust gases and cooling system sea water out of the boat, the other purpose of the exhaust system is to prevent sea water intrusion into the engine (at the exhaust outlet) under all conceivable conditions of boat trim, boat operation, sea conditions, and heel angle while not exceeding the manufacturer’s back pressure recommendations. Seawater intrusion is usually catastrophic to catalytic converters and engines. The engine/genset supplier is not in a position to judge what installation characteristics will prevent water intrusion in all conceivable circumstances. That judgment is the responsibility of the engine installer. What we as the manufacturer can do is advise the best practice, as we see it, leaving final judgments to the installer.

Sea Water Intrusion Through The Exhaust Outlet

The diagram above illustrates a below waterline installation of an engine or genset. The letters A through H are the important dimensions that are discussed in detail in the following text:

Let’s start with A, the difference between the highest underside of the boat deck near the engine/generator and the high point of the exhaust run from the water lift muffler to the exhaust outlet. A should be minimized. There is every reason to attach the high point of the exhaust hose directly to the underside of the deck. There is no reason to fail to take full advantage of this maximum available height because it forms the primary barrier to water intrusion.

We need to define the water line for exhaust installation purposes. By water line we mean the highest point the water level can reach, at the location of the exhaust through hull fitting, from all conceivable causes - other than passing waves of a duration of not more than a second or two. This worst case water level could be caused by any of the following: backing down aggressively, turning aggressively, coming up onto a plane, decelerating off a plane, extreme boat trim, high seas, wallowing in following seas, heeling, etc. These instructions will refer exclusively to this worst case water level as the relevant water level to plan a good installation.
EXHAUST SYSTEM INSTALLATION

This leads to \(B \), the amount by which the spill over point of the exhaust outlet is above the worst case water level. \(B \) should be maximized (and certainly always positive). Then the exhaust loop height, \(C \), from the high point spill over point to the through hull fitting spillover point, becomes a back up to \(B \) for preventing water intrusion, rather than being the primary defense – as becomes the case whenever the exhaust outlet spillover point dips beneath the water level.

But the height of \(C \) is also important. The only defense against momentary passing waves, when they immerse the exhaust outlet, is the exhaust loop height, \(C \). If \(A \) has been minimized, \(C \) will probably be in excess of a couple of feet. The higher the better. Maximize this height, \(C \), because it is your only defense against a passing wave, rogue waves included!

The verticality, \(D \), of the hose run from the high point to the exhaust outlet is also important. When a momentarily rising water level immerses the exhaust outlet and is accompanied by water velocity towards that through hull fitting, it is easier for the intruding water to rise along a sloping hose towards the high point than to rise vertically towards that high point. Minimize \(D \) and keep this part of the exhaust hose as vertical as possible.

Similarly, it is desirable that angle \(N \) be a 90 degree angle with the exhaust hose rising vertically. This will further discourage water intrusion, especially when backing down, turning, or otherwise experiencing sea water velocity towards the exhaust outlet.

\(E \) is the inside diameter of the exhaust hose. This should be no less than \(F \), the outside diameter of the generator's water injected exhaust elbow. \(E \) should only exceed \(F \) if exhaust system back pressure requirements are not met.

\textbf{NOTE:} When the length of \(G \) is more than 20 ft, increase the hose diameter \(E \) by 1/2 in. to relieve back pressure.

\(G \) is the length of exhaust hose leading from the water lift muffler to the high point. The shorter this length, the lower the back pressure and the greater will be the reserve capacity inside a given water lift muffler. The shorter the better, but it is much more important to minimize \(A \) than to minimize \(G \).

The water lift muffler should be sized to hold multiples of the volume of water that spills back from the exhaust high point when the engine/generator shuts off. The actual amount of normal spill back at shut down is a function of length \(G \), the exhaust hose inside diameter, \(E \), and the sea water pump flow rate. The larger the muffler the better. Remember - when all else fails and water comes pouring over the high point, only reserve capacity in the muffler can contain it and prevent it from entering the engine/generator.

\(H \) is the height of the engine’s water injected exhaust elbow outlet above the top of the water lift muffler. This should be maximized. This length of hose is additional reserve capacity to contain both intruding water and splashing inside the water lift muffler.

\(J \) is the total height engine exhaust gas pressure must move water up hill – from the bottom of the muffler to the spillover point at the exhaust run high point. \(J \) is driven by other installation dimensions. It results from a conservative installation, rather than being a driving factor. In most installations, \(J \) would not exceed 4' (1.2m), this height should produce adequate exhaust system back pressure level.

\(\textbf{WARNING:} \) Use extreme care during installation to ensure a tight exhaust system. Exhaust gases are deadly.
EXHAUST SYSTEM INSTALLATION

Sea water Intrusion Through The Intake Seacock

Another means of water intrusion is though the sea water intake seacock. This can occur when any part of the sea water system or exhaust system are below the worst case water level (other than the seacock itself which is already below the water level, of course). What happens is that, upon engine shutdown, sea water siphons from the intake seacock, up through the sea water cooling circuit containing the sea water pump, heat exchanger, and water injected exhaust elbow, into the water lift muffler. This seawater will siphon past the impeller of the sea water pump and fill the muffler and all hoses attached to the muffler until the outside water level is reached. If the engine exhaust manifold is below the worst-case water level, seawater will simply pour into the cylinders, destroying the engine.

This form of water intrusion is avoided by the proper installation of an anti siphon valve in the sea water circuit between the sea water pump outlet and the water injected exhaust elbow inlet. Refer again to the generic drawing of a below water line engine/generator installation utilizing a water lift muffler.

Generator-Not in Operation Water Intrusion

Boat operators may be accustomed to seeing a propulsion engine exhaust outlet dip beneath the water frequently when underway and think this is acceptable for a generator exhaust outlet as well. Not so! When the boat is underway, exhaust pressure keeps water out of the propulsion engine exhaust. But when the generator is not running, there is no exhaust pressure to keep water out of its exhaust outlet. The exhaust outlet of engines which may not be operating when the vessel is underway — sailboat engines and generators — must be well above the worst case water level.

Cumulative Process

Water intrusion between operations of the engine is a cumulative process. If just a little bit of water spills over the high point, but it happens many times, it will fill the muffler and endanger the engine. This could easily be the case for a power boat not using its generator or for a sailboat not using its engine. If you suspect that water is intruding, run the engine frequently until the suspected problem is confirmed and fixed.

NOTE: Running the engine or genset will normally preclude water intrusion as the exhaust flow under pressure prevents water from entering the exhaust outlet.

Cranking the Starter: Draining the Muffler

Prolonged cranking of the starter may cause excessive sea water to build up between the engine and the high point. Each time cranking is interrupted additional water may spill back into the muffler. In time this cumulative spill back can flood the engine. Unusual cranking and/or cranking interruptions must be monitored and the muffler drained before excessive water buildup occurs. This may be made more convenient by installing a suitable, non-corrosive valve at the muffler drain fitting.

Check Valves

Various types of check valves are available and suitable for exhaust runs. Examples are in-line check valves offered by some exhaust component manufacturers and flapper valves on exhaust outlets. None of these may be considered as an alternative to a good installation. They can leak, they can foul, and they can open intermittently. Think of them as an emergency means to keep out that rogue wave or extreme following sea. Never rely on them to stay closed for more than a second or two.

Exhaust Back Pressure

After the installation is operational, exhaust back pressure must be measured at the outlet of the water injected exhaust elbow. Measure with an appropriate gauge or manometer. Operate a propulsion engine underway at cruising RPM. Operate a generator at rated load. As the engine/genset operates it continuously pushes the exhaust gases and raw water thru the exhaust system, up hill and overboard thru the exhaust outlet. This causes significant back pressure. Excessive back pressure reduces engine power, higher temperatures and cab reduce the life of the engine.
EXHAUST SYSTEM INSTALLATION

Water Separators Exhaust Systems

Water separators are the latest innovation in exhaust systems. The separator uses gravity and centrifugal force to separate the cooling water from the exhaust gas and then discharges the water separately under the vessel's hull. This makes for a quiet and efficient system that reduces back pressure and prevents sea water intrusion by wave action.

Installation

The separator must be securely mounted as high as possible (point A in the previous diagrams) above the water lift muffler and well above the vessel's waterline in all attitudes of operation.

The discharge (drain) hose for the separated cooling water must go directly and vertically down from the separator to a thru hull fitting on the hull below the waterline. This provides a very quiet exhaust.

The discharge (drain) hose for the exhaust gas must also go directly and vertically down to a thru hull fitting under the hull just above the waterline. This gas discharge hose will still contain some water, to prevent this water from becoming trapped and impeding the flow of gases, make certain that the hose leads down hill without any loops or dips.

Water separators are manufactured by:
- Halyard Limited
- Whadden Business Park
- Southampton Road
- Whadden, Salisbury SP5-3HF
- United Kingdom
- www.halyard.eu.com
- Centek Industries, Inc.
- 116 Plantation Oak Drive
- P.O. Box 3028
- Thomasville, GA 31799-3028
- www.centekindustries.com

Dry Stack Exhaust Systems

Commonly seen on commercial fishing boats, dry stack exhausts can also be used on trawler style pleasure boats. A dry stack exhaust directs the exhaust gas straight from the generator or engine without obstructions. A dry stack exhaust becomes very hot when the engine is operating and should not be close to any combustible materials (wood, fiberglass, etc.) unless it is properly shielded or insulated.

Make certain the exhaust and muffler are of sufficient diameter to clear the exhaust gases and prevent excessive back pressure. Provisions must also be made for discharging the raw cooling water.

After final assembly, test run the generator and check all connections and elbows for exhaust leaks. A back-pressure test should also be performed at this time. Back pressure should not exceed 1.5 psi (0.11 kg/cm²).

Regulations require that the exhaust muffler be constructed of aluminized steel or other corrosion resistant material and be of welded or crimped construction. An approved spark arrestor must be installed with the muffler in gasoline installations.

NOTE: Liability for damage or injury and warranty expenses becomes the responsibility of the person installing an exhaust system. Contact WESTERBEKE or your WESTERBEKE dealer regarding any exhaust system problems.

Dewatered Vertical Exhaust Systems

A typical houseboat installation is set out in ABYC P-1, Figure 6c.

According to NIOSH, their research indicates that the dewatered vertical stack, when properly designed and installed, may be a viable, low-cost engineering control that will dramatically improve the safety of houseboat users. For more information, visit: http://www.cde/gov/NIOSH/.
Exhaust Back Pressure (cont.)

Back pressure should not exceed 1.5 psi or 41" WC. Excessive back pressure can be reduced by increasing \(E \), increasing the size of the water lift muffler, reducing \(J \), and reducing \(G \). However \(A \), \(C \), and \(B \) should not be compromised to relieve back pressure.

Back pressure should not exceed the following specifications:
- 3 inches of mercury
- 41 inches of water in the water column
- 1.5 psi (0.1 \(\text{kg/cm}^2 \))

Measuring Exhaust Back Pressure

 SOME WESTERBEKE ELBOWS ARE PRE-DRILLED, TAPPED, AND PLUGGED FOR BACK PRESSURE MEASURING

Sea Trial (Generator not operating)

A sea trial must be conducted to confirm that no water intrusion takes place, either thru the exhaust outlet on the hull or in the sea water intake thru-hull opening. Remove impeller from the sea water pump. Disconnect the exhaust hose at the muffler outlet and place it in an empty bucket (bucket #1). Disconnect the sea water hose at the muffler inlet and place it into a second empty bucket (bucket #2).

Select the worst sea conditions available. Operate the boat as aggressively as possible, putting it through as large a variety of operating situations as you would ever encounter. Operate the boat in this way for as long as possible.

Periodically verify that no water enters either bucket. Any water in bucket #1 is water intrusion via the exhaust outlet. Any water in bucket #2 is water intrusion via the sea water intake thru-hull opening. Either instance of water intrusion shows that the installation is not adequate, since you will someday experience conditions worse than the sea trial.

Exhaust Hose

With a water lift exhaust system marine grade CORRUGATED exhaust hose can be used for the water cooled section of the exhaust because of the ease of installation and flexibility. Use a continuous length of hose between the engine connection and the inlet to the muffler and from the outlet of the muffler to the outlet on the hull. Provide adequate support for the rubber hose, to prevent sagging, bending, and formation of water pockets. Always use corrosion resistant carriers and hangers.

For dry or custom pipe exhaust systems, use a flexible section, preferably of stainless steel, no less than 12" (30 cm) overall, threaded at each end and installed as close to the engine as possible. This flexible section should be installed with no bends and covered with insulating material. The exhaust line should be properly supported by brackets to eliminate any strain on the manifold flange studs.

WARNING: *Do not install rubber hose with sharp bends as this will reduce efficiency. Do not use rubber hose on dry type exhaust applications. Doing so may cause hose failure and leakage of deadly exhaust gas.*

Make sure that the water discharge into the rubber hose section is behind a riser elbow or sufficiently below the exhaust flange so that water cannot possibly flow back into the engine. Also, in custom systems, make sure that entering raw water cannot spray directly against the inside of the exhaust piping. Otherwise excessive erosion will occur.

Dry components of the exhaust system between the exhaust manifold and the water injected exhaust elbow must be properly insulated to hold in the heat, prior to the cooling water being injected.

Scoop-Type Intake

Where generators are installed in very high speed vessels (50-60 knots), it has been necessary to use a scoop-type raw water intake to insure an adequate supply of cooling water to the generator. Generally, this is not recommended, but if it needs to be done, the generator must be mounted high enough so that the exhaust piping has a continuous downward pitch from the muffler to the exhaust outlet in the hull. The pitch should be adequate so that the muffler will continuously drain and no water can back-up into the engine (see illustration).
EXHAUST SYSTEM

EXHAUST ELBOW INSTALLATION

Exhaust elbows are standard on generators, optional on engines. For installation on your engine/generator, we offer 45°, 70°, and 90° exhaust elbows and an exhaust riser.

NOTE: Fabricated exhaust elbows or risers attached to the exhaust manifold shall not exceed 8 lbs. when unsupported.

1. Coat only one side of the exhaust gasket with **High Tack** (manufactured by Permatex Company, Brooklyn, N.Y.) adhesive sealant. Place this coated surface against the exhaust manifold’s exhaust port flange (the gasket should stick to the flange without falling off).

2. Place the clamp over the elbow’s flange. Place your exhaust elbow against the exhaust manifold’s flange so the exhaust manifold’s flange rests snug against the exhaust elbow’s flange with the gasket centered between the two. Now slip the exhaust clamp over both flanges.

3. Tighten the clamp just enough so the exhaust elbow can remain attached to the manifold and still be rotated. The exhaust elbow discharge must be directed downward so the mixture of raw water and exhaust gases will flow/fall downward into the exhaust muffler which must be positioned below the exhaust elbow. There should be no loops or rises in the exhaust hose connected between the exhaust elbow and the muffler, as these would trap water and possibly allow water to flow back into the engine during starting or at shut-down.

4. Adjust the elbow by rotating it until the desired alignment with the exhaust piping is acquired.

5. Carefully tighten the clamp between 8 to 10 lb-ft (1.1-1.4 kg-m).

CAUTION: 10 lb-ft (1.4 kg-m) Torque Limit: Approach the 10 lb-ft (1.4 kg-m) torque limit with caution. The clamp’s threads will break if more than 10 lb-ft (1.4 kg-m) is applied to the clamp.

6. When the engine is started for the first time with the new elbow, check this exhaust manifold/elbow connection for leaks. If a leak exists, correct it immediately.
EXHAUST SYSTEM

EXHAUST SYSTEM PRECAUTIONS

Carbon Monoxide

The best protection against carbon monoxide poisoning is a daily inspection of the complete exhaust system. Check for leaks around manifolds, gaskets, and welds. Make sure exhaust lines are not heating surrounding areas excessively. If excessive heat is present, correct the situation immediately. If you notice a change in the sound or appearance of the exhaust system, shut down the unit immediately and have the system inspected and repaired at once by a qualified mechanic.

WARNING: Carbon Monoxide Gas is Deadly!

Carbon monoxide is a dangerous gas that can cause unconsciousness and is potentially lethal. Some of the symptoms or signs of carbon monoxide inhalation or poisoning are:

- Dizziness
- Nausea
- Headache
- Weakness and Sleepiness
- Throbbing in Temples
- Muscular Twitching
- Vomiting
- Inability to Think Coherently

If you experience any of the above symptoms, get out into fresh air immediately.

There may be circumstances under which the accumulation of carbon monoxide is unavoidable, and the use of the appropriate warning label(s) may be warranted.

A carbon monoxide warning decal has been provided by Westerbeke. Display this decal near your engine or generator, on your cabin bulkhead, or in some other prominent location.

NOTE: It is extremely important that a carbon monoxide detector be installed in your boat's living quarters. Make sure it is manufactured for the marine industry. They are inexpensive and easily available at your marine supplier.

Raw Water Erosion

When the engine's raw water is fed into an exhaust system so that the full stream of this water strikes a surface, erosion takes place. This erosion may cause premature failures. The proper design of either a water-jacketed or water-injected "wet" exhaust system to prevent this problem requires that the raw water inlet be positioned so that the entering stream of raw water does not directly strike a surface. In addition, the velocity of the entering raw water stream should be as low as possible, which can be achieved by having inlet fittings as big in diameter as possible.

Excessive Weight

Make sure there are no unnecessary objects suspended from any portion of the exhaust lines. Exhaust risers installed off the exhaust manifold should not exceed 8 lbs in total weight when rigidly constructed. Excessive weight could cause deflection or distortion of the manifold resulting in damage and/or internal leaks.

Insulation

Inspect insulated portions of the exhaust system to ensure there is no deterioration of the insulation.

Overcranking

Prolonged cranking intervals without the engine starting can result in filling the engine-mounted exhaust system with raw water coolant. This may happen because the raw water pump is pumping raw water through the raw water cooling system during cranking. This raw water can enter the engine's cylinders by the way of the exhaust manifold once the exhaust system fills. To prevent this from happening, close the raw water supply through-hull petcock, drain the exhaust muffler, and correct the cause for the excessive engine cranking needed to obtain a start. Once the engine starts, immediately open the through-hull petcock. Engine damage resulting from this type of raw water entry is not a warrantable issue.

NOTE: The ABYC standards and this manual are limited in that they cannot cover all conceivable variables. The reader is cautioned not to rely exclusively on this manual to prevent the accumulation of carbon monoxide. See ABYC TH-23, Design, Construction and Testing of Boats in consideration of Carbon Monoxide.
CONTROL PANELS

DC ELECTRICAL CONNECTIONS

WESTERBEKE engines and generators are supplied pre-wired and with plug-in connectors. Never make or break connections while the engine is running. Carefully follow all instructions on the wiring diagram supplied, especially those relating to fuse/circuit breaker requirements. Wiring diagrams are included in your Operators Manual.

NOTE: WESTERBEKE manufactures marine engines and generators using components that meet very rigid safety standards. If a component on the engine or generator is replaced with one that is non-compliant, then the safety of the boat is jeopardized. Make certain that any engine component you replace is a genuine WESTERBEKE replacement part.

CONTROL PANELS FOR PROPULSION ENGINES

Two optional manually-operated control panels for propulsion engines are available from WESTERBEKE. These are the ADMIRAL CONTROL PANEL and the CAPTAIN CONTROL PANEL. Both panels come with 15 ft. (4.6 m) of connecting harness. The features of these two panels are described in detail at the end of this section.

DIESEL GENERATOR INSTRUMENT PANELS (ANALOG)

All WESTERBEKE diesel generators come with a standard engine instrument panel (see illustration). With the exception of the 6.5/7.6 BTD, they are mounted in a panel box attached to the AC alternator. The panel faces the service side of the generator and can be rotated to suit particular installations.

The panel can also be remote mounted by using optional plug-in extension harnesses which are available in 15 ft. (4.6 m) increments. A maximum of two harnesses, 30 ft (9.2 m) can be connected. For longer distances, hard wiring can be used as shown in the Operators Manual. An optional cover plate is available to cover the face of the panel box when the instrument panel is remote mounted. An optional plate with pre-heat and start and stop switches is also available for mounting in place of the instrument panel for operation at the unit.

The 6.5/7.6 BTD comes standard with an instrument panel for remote mounting (see illustration) and one 15 ft (4.6 m) extension harness. Pre-heat and start and stop switches are provided on the unit.

DIESEL GENERATOR STANDARD INSTRUMENT PANEL

WATER TEMPERATURE GAUGE: ENGINE COOLANT TEMPERATURE SHOULD INDICATE 175°F TO 195°F (80° TO 91°C).

OIL PRESSURE: ENGINE LUBRICATION OIL PRESSURE — THE NEEDLE WILL FLUCTUATE DEPENDING ON LOAD.

REMOTE START/STOP PANEL

Two instrument panels can be installed using the optional dual gauge sender kit. This second panel must be hard-wired by the installer.

OPTIONAL INSTRUMENT PANEL (GASOLINE GENERATORS) (ANALOG MODELS)

An optional instrument panel is available for some 4 cylinder models with an engine oil pressure gauge, water temperature gauge, engine mounted alternator voltage gauge, engine operating hourmeter and control switches. This panel must be wired into the terminal strip in the main control panel on the engine/generator and must be mounted in a remote location where the instruments can be monitored and the switches activated.

NOTE: This panel must not be located in an engine or generator compartment because it is not ignition protected, and has not been Coast Guard approved.

OPTIONAL REMOTE START/STOP PANEL (DIESEL AND GASOLINE GENERATORS) (ANALOG)

An optional remote Start/Stop panel is available containing three switches and a run indicator light (green). This panel must be wired into the terminal strip in the main control panel on the engine/generator and must be mounted in a remote location such as the vessel’s wheelhouse.

NOTE: This panel must not be located in an engine or generator compartment because it is not ignition protected, and has not been Coast Guard approved.
CONTROL WIRING

For control wiring, see the DC WIRE SIZING page in this manual.

NOTE: All wiring should be tied down with clamps or plastic ties, and spaced at intervals close enough to prevent chafing from vibration. Check to make sure all the harness connections are tight and that they are made to the appropriate terminals.

⚠️ CAUTION: The electrical code will not allow DC wiring to be routed together with AC wiring.

Refer to the wire-size chart (DC) in this manual when selecting the wire size to be used between the engine control panel and remote start/stop panel. Use color codes to comply with ABYC Standards. See your WESTERBEKE Operators Manual for the remote panel wiring schematic.

NOTE: Generator AC load connections, shore power connections, voltage adjustments and all the necessary wiring diagrams are included in your WESTERBEKE Operators Manual.

AC WIRING (GENERATORS)

Various AC output voltages and frequencies are available for your generator. For these specifications, and for information about AC wiring connections and adjustments, refer to your Operators Manual.

The generator’s data plate gives the voltage, current and frequency rating of the generator. A diagram of the various AC voltage connections is provided on the AC wiring decal that is affixed to the inside of the louvered cover at the generator end of the unit.

Recommended publications concerning electrical installation standards and safety codes are listed in the SAFETY INSTRUCTIONS section of this manual. Make sure that all electrical connections, tests and adjustments are performed by a qualified electrician.

BATTERIES

Starter batteries should be located as close to the engine or generator as possible to avoid voltage drop through long leads. Install a battery disconnect switch in the B+ cable so the battery can be disconnected when the engine/generator is serviced. It is bad practice to use the starter batteries for other services unless they require low amperage or are intermittent. In cases where there are substantial loads (from lights, refrigerators, radios, depth sounders, etc.) it is essential to have a complete, separate system and to provide charging current for this by means of a second alternator, dual output alternator or alternator output splitter. The output splitter is a standard marine accessory. It comes with complete instructions on how it can be integrated with an electrical system.

Starter batteries must be of a type which permits a high rate of discharge.

See your Operators Manual specifications for cold cranking ampere hours requirements. Most marine batteries on the market today have large cranking capacities. The battery compartment must be well ventilated to prevent accumulation of explosive battery gases.

Mount the battery in an acid-resistant tray on a platform above the floor. It must be secured to prevent shifting. If mounted in an engine compartment, always install a non-metallic cover to prevent battery damage and arcing from accidentally dropped tools. Be sure the battery connections are clean and tight, then cover the battery terminals with a dielectric grease to retard corrosion.

U.S. Coast Guard regulations and Marine Insurance Companies require that the ship’s batteries have a fixed cover or holdown straps to keep the batteries in place should a rollover occur.

Carefully follow the recommended wire sizes shown in WESTERBEKE’S wiring diagrams for the battery connections:

Refer to the ABYC manual on Standards Section E-11 when selecting battery cable sizes with regards to amperage (engine cold cranking amperage draw) as well as (amperage rating of high output DC alternators). The positive (red) and negative (black) battery cable MUST be of the same AWG size. The negative battery cable should be connected at the engine as close to the starter motor as possible.

⚠️ WARNING: Do not connect the starting battery until installation is complete. Accidental starting of the engine or generator could cause serious personal injury.

GROUNDING

Generators and propulsion engines must be grounded in accordance with USCG regulation 33CFR183.415. The regulation requires that a common ground conductor be connected between the generator and the vessel’s main propulsion engine’s grounded cranking motor circuit.

The engine or generator must be bonded to the vessel’s common bonding conductor with a bonding strap. If a metallic fuel line is installed between the fuel tank and the engine/generator shutoff valve, it too must be bonded to the same vessel common conductor.

This conductor prevents accidental passage of cranking current through the fuel systems and smaller electrical conductors common to engines and generators. This can happen if a cranking motor ground circuit becomes resistive or opens from corrosion, vibration, a bad cable, etc.
DESCRIPTION

WESTERBEKE’S Digital Control Panel provides the operator with an LCD display that continuously monitors all the operations of the generators in easy to understand text messages.

LCD DISPLAY

Operating temperatures may cause the LCD display to vary in color. This is normal and a change in color will not affect the operation on the control panel.

Periodically clean the control panel LCD screen using a soft cloth.

INDICATOR LIGHTS

SIX LIGHTS THAT INDICATE WHERE A FAULT HAS OCCURRED.

FAILURE LIGHT

A RED LIGHT WILL APPEAR IF THE RUN SEQUENCE IS INTERRUPTED BY A FAILURE.

STOP BUTTON

STARTS THE ENGINE

UP AND DOWN ARROWS

WHEN THE LCD DISPLAY IS IN ITS SCROLL MODE, THE UP AND DOWN ARROWS CAN BE USED TO ADJUST THE DARK AND LIGHT CONTRAST.

UP-ARROW

WHEN IN SCROLL LOCK MODE INDIVIDUAL FUNCTIONS CAN BE MONITORED BY PRESSING THE UP-ARROW.

DOWN-ARROW

WHEN IN SCROLL LOCK MODE INDIVIDUAL FUNCTIONS CAN BE MONITORED BY PRESSING THE DOWN-ARROW.

PRIME BUTTON

THIS BUTTON ENERGIS THE FUEL PUMP AFTER REPAIRING A FAILURE OR PERFORMING MAINTENANCE. PRESSING THIS BUTTON WILL PURGE AIR OUT AND BRING FUEL IN TO THE LINES.

LOW CO MODELS (TYPICAL)

GENERATOR CONTROL BOX

The start/stop rocker switch is the only functional component on the generator control panel used to start and stop the generator.

The start/stop rocker switch is a three position switch with momentary contacts in the (START) and (STOP) position and a stationary contact in the center (NORMAL). This position allows the generator to run once started and also enables the remote start/stop panel(s) to control the start/stop functions of the generator.

The (START) position starts the generator and once released reverts to the center position. The (STOP) position stops the engine in normal operation as well as in an emergency situation. This position is also used to prime the fuel system when necessary.

Consult the specific models Operators Manual for additional information as well as the remote start/stop panel information.
ADMIRAL CONTROL PANEL

DESCRIPTION

This manually-operated control panel is equipped with a KEY switch and RPM gauge with an ELAPSED TIME meter which measures the engine's running time in hours and in 1/10 hours. The panel also includes a WATER TEMPERATURE gauge which indicates water temperature in degrees Fahrenheit, an OIL PRESSURE gauge which measures the engine's oil pressure in pounds per square inch, and a DC control circuit VOLTAGE gauge which measures the system's voltage. All gauges are illuminated when the key switch is turned on and remain illuminated while the engine is in operation. The panel also contains two rubber-booted pushbuttons, one for PREHEAT and one for START.

When the engine is shut down with the key switch turned off, the water temperature gauge will continue to register the last temperature reading indicated by the gauge before electrical power was turned off. The oil pressure gauge will fall to zero when the key switch is turned off. The temperature gauge will once again register the engine's true temperature when electrical power is restored to the gauge.

A separate alarm buzzer with harness is supplied with every Admiral Panel. The installer is responsible for electrically connecting the buzzer to the four-pin connection on the engine's electrical harness. The installer is also responsible for installing the buzzer in a location where it will be dry and where it will be audible to the operator should it sound while the engine is running. The buzzer will sound when the ignition key is turned on and should silence when the engine has started and the engine's oil pressure rises above 15 psi (1.1 kg/cm²).

WATER TEMPERATURE GAUGE: This gauge is graduated in degrees Fahrenheit and is illuminated while the key switch is turned on. The engine's normal operating temperature is 170° - 190° F (77° - 88°C).

OIL PRESSURE GAUGE: This gauge is graduated in pounds per square inch (psi) and is illuminated while the key switch is turned on. The engine's normal operating oil pressure ranges between 30 – 60 psi (2.1 – 4.2 kg/cm²).

KEY SWITCH: The key switch when turned on supplies DC power to the instrument panel cluster, preheat switch, excitation terminal of the DC charging alternator and to the alarm buzzer energizing it in a pulsing mode.

DC VOLTMETER: Indicates the amount the battery is being charged. Should show 13V to 14V.

AUTOMATIC ALARM SYSTEM

COOLANT TEMPERATURE ALARM: An alarm buzzer has been supplied with the instrument panel. If the engine's coolant reaches 210° F (99°C), this switch will close sounding the alarm which will emit a continuous signal.

OIL PRESSURE ALARM: An oil pressure alarm switch is located off the engine's oil gallery. This switch monitors the engine's oil pressure. Should the engine's oil pressure fall to 10 – 5 psi (0.7 – 0.4 kg/cm²), the switch will open sounding the alarm. In this event, the alarm will emit a pulsating signal.
CAPTAIN CONTROL PANEL

DESCRIPTION

This manually-operated control panel is equipped with a KEY switch, an RPM gauge, PREHEAT and START buttons, an INSTRUMENT TEST button and three indicator lamps, one for ALTERNATOR DISCHARGE, one for low OIL PRESSURE, and one for high ENGINE COOLANT TEMPERATURE.

The panel also includes an alarm buzzer for low OIL PRESSURE or high COOLANT TEMPERATURE. The RPM gauge is illuminated when the KEY switch is turned on and remains illuminated while the engine is in operation.

RPM GAUGE: REGISTERS REVOLUTIONS PER MINUTE OF THE ENGINE AND CAN BE RECALIBRATED FOR ACCURACY FROM THE REAR OF THE PANEL.

OIL PRESSURE ALARM LIGHT

ALARM: THE ALARM WILL SOUND IF THE ENGINE'S OIL PRESSURE FALLS BELOW 10 – 5 psi (0.7 – 0.4 kg/cm²). IN THIS EVENT, THE ALARM WILL_EMIT A PULSATING SIGNAL. THE ALARM WILL ALSO SOUND IF THE COOLANT TEMPERATURE IN THE FRESHWATER COOLING CIRCUIT RISES TO 210°F (99°C). IN THIS EVENT, THE ALARM WILL_EMIT A CONTINUOUS SIGNAL.

NOTE: THE ALARM WILL SOUND WHEN THE KEY SWITCH IS TURNED ON. THIS SOUNDING IS NORMAL. ONCE THE ENGINE STARTS AND THE ENGINE'S OIL PRESSURE REACHES 15 psi (1.1 kg/cm²), THE ALARM WILL SILENCE.

KEY SWITCH: THE KEY SWITCH WHEN TURNED ON SUPPLIES DC POWER TO THE INSTRUMENT PANEL CLUSTER, PREHEAT SWITCH, EXCITATION TERMINAL OF THE DC CHARGING ALTERNATOR AND TO THE ALARM BUZZER ENERGIZING IT IN A PULSING MODE.

START BUTTON: WHEN PRESSED, ENERGIZES THE STARTER'S SOLENOID WHICH CRANKS THE ENGINE. THIS BUTTON WILL NOT OPERATE ELECTRICALLY UNLESS THE PREHEAT BUTTON IS PRESSED AND HELD AT THE SAME TIME.

PREHEAT BUTTON: WHEN DEPRESSED, IT CLOS ES THE CONTACTS IN THE PREHEAT SOLENOID sending POWER TO THE GLOW PLUGS. THE "I" TERMINAL ON THE PREHEAT SOLENOID ALSO RECEIVES POWER AND THIS IS TRANSMITTED TO THE ELECTRIC FUEL PUMP. DC POWER IS ALSO TRANSMITTED TO THE START BUTTON.

ENGines & Generators
FUEL SYSTEM

FUEL TANKS—GENERAL

It is very important that the design, construction and installation of all fuel system components meet the highest possible standards. Use only products specified for marine applications.

Fuel tanks for diesel engines and generators may be made of fiberglass, aluminum or stainless. Fuel tanks for gasoline engines and generators may be made of only fiberglass or aluminum; stainless is not appropriate for gasoline because improper welding can remove carbon leaving only steel, which will rust and then leak.

If the tank is made of fiberglass, be certain that the interior is gel-coated to prevent fibers from contaminating the fuel system. Copper or galvanized fuel tanks should not be used. The nominal thickness of a fuel tank depends on the material used. Any fitting or opening must be at the top of the tank. A drain plug at the bottom of the tank is not acceptable.

Avoid the use of fittings made of copper-based alloys such as brass as they will deteriorate the aluminum fittings. Fastenings for an aluminum tank should be 300 series stainless steel.

It is not necessary to mount the tank above the engine level, as the fuel lift pump provided will raise the fuel from the tank. The amount of lift should be kept to a minimum 6 ft (1.8 mm). If a tank is already installed above engine level, it can be utilized in this position.

Cleanliness and care are especially important when the fuel tank is installed because any dirt left in the tank will cause fouling when the engine is started for the first time.

⚠️ CAUTION: Make sure the fuel tank filler is properly sealed to prevent water re-entry should it become awash. The fuel tank’s vent should be routed so as to prevent water entry as well.

The fuel tank’s fuel pickup tube should be clear and unobstructed, without screens or gauze strainers. Make sure that all fittings are sufficiently tightened to prevent leaking.

Fuel tanks that are located below the engine’s fuel system level must have their fuel return connection at the tank extending down into the tank in the same manner as the pickup tube; otherwise, air will replace fuel siphoning out of the engine’s fuel system through the return. (Diesel Models).

The fuel tank’s vent should be located so that its discharge route cannot allow water to enter through to the fuel tank(s). Moisture must not be allowed to accumulate in the vent’s line.

Mount the fuel tank and secure it into position. The NFPA recommends that the bottom tanks be installed on slatted wooden platforms to help prevent moisture condensation. Cylindrical tanks should be set in chocks or cradles and securely fastened. Insulate all wood or metal surfaces from the tank surface with a non-abrasive and non-absorbent material.

FUEL TANKS—GASOLINE

Tanks must be labeled with the manufacturer’s name, tank material and capacity. They also must be marked that they have been pressure tested to the requirements of Title 33 CFR, sub part J. If either the fuel-fill fitting or the tank is metallic, it will need to be grounded. A 10-gauge or larger stranded copper wire must be fastened from the metal components to the boat’s ground.

Design the fuel tank vent line so that gasoline cannot spill onto the boat. A loop in the vent line from the top of the tank to the underside of the deck and then to the through-hull fitting will prevent this. The line should drain back to the tank with no traps. The vent line should be no less than 9/16 in (14.3 mm) I.D.. The through-hull vent fittings must be equipped with a flame arrestor.

Fuel Tanks Located Above the Engine/Generator

A carburetor float valve cannot be trusted to hold back fuel in an installation having a fuel tank located at or above the engine/generator’s fuel system. This type of system, with some or all of the fuel supply line to the carburetor routed below the level of the fuel tank’s top, requires a shut-off valve to shut off the fuel supply to the engine or generator when the engine isn’t running.

USE EITHER ANTI-SIPHON VALVES OR ELECTRICALLY OPERATED FUEL STOP VALVES

FUEL TANKS LOCATED ABOVE THE ENGINE/GENERATOR
A shutoff valve is necessary to guard against the possibility of gasoline siphoning through the supply line to the carburetor and into the engine in case the carburetor float valve doesn’t close, the carburetor needle valve doesn’t operate properly, or the fuel line ruptures between the engine and the fuel tank at a point below the fuel level. The shut-off valve can be installed at the tank withdrawal fitting, or at a location where the line from the fuel tank will no longer remain above the fuel tank top level. It can be electrically operated automatically (with manual override) to open when the engine starts and close when it shuts down. A manually operated valve can also be used, operated either from the Start/Stop panel area or from the vessel’s deck. The shut-off valve should be of the fuel oil type, and it is important that all joints be free of pressure leaks.

NOTE: The use of mechanical spring-type check valves instead of an electric solenoid shut-off valve is not recommended since these may tax the lift pump’s ability to draw fuel through the check valve. A check valve can trap debris under its seat which inhibits the valve’s ability to close. In addition, if a check valve’s cracking pressure is too high, it can contribute to vapor lock. Should a mechanical-type spring loaded check valve be used, it must be of an adjustable type. This type valve should be adjusted to have a cracking pressure that will prevent siphoning when the engine or generator is not operating but not so excessive as to prevent the fuel pump from drawing fuel through it.

Fuel Tanks Located Below the Engine/Generator

An installation having a fuel tank located below the engine or generator’s fuel system, with the fuel supply line to the carburetor routed above the level of the fuel tank’s top, does not require an anti-siphon shut-off valve, but does require two manually-operated service shut-off valves — one located at the fuel connection to the tank, and another located at the fuel connection to the engine/generator.

DIESEL FUEL SYSTEM ANTI-SIPHON DEVICES

Fuel system anti-siphon devices should not be used with a diesel engine/generator. It is not necessary and, in addition, introduces air into the fuel which may cause erratic operation. The fuel system should include one or more fuel shutoff valves.
DUAL PURPOSE FUEL TANK

If you’re running both a generator and a propulsion engine and they use the same fuel, you can use the same fuel tank. However, before that decision is made, the following factors must be considered:

- There must be adequate fuel capacity for both engines — refer to the specifications section of your owner’s manual for fuel consumption figures.
- In diesel installations the fuel returning to the tank is warm. To obtain maximum engine efficiency, fuel delivered to the injectors must be cooled. The fuel tank volume must be adequate to cool the returned fuel.

If a fuel tank is shared, a fuel line tee should not be used. A tee can cause erratic genset operation due to fuel starvation. The genset’s fuel pump does not have the capacity to overcome the draw of the propulsion engine’s fuel pump.

This is true also of the return lines. Pressure from one engine could be higher than the other and force return fuel back into the lower-pressure engine injector. The return line should enter the tank as far as possible from the supply lines.

FUEL LINES

The proper installation of fuel lines is very important. All fuel line materials must be approved for marine installations and meet the requirements of both the USCG and the ABYC.

The fuel system should be installed in such a manner as to allow the engine-mounted fuel lift pump to maintain a positive inlet pressure to the injection pump under all operating conditions. As the fuel lift pump has a capacity in excess of that required by the injection pump, the overflow is piped to the fuel tank and should be connected at the top of the tank.

Great care should be taken to ensure that the fuel system is correctly installed so that airlocks are eliminated and precautions taken against dirt and water entering the fuel.

NOTE: The fuel supply line to the engine/generator should be from its own pick-up in the fuel tank and NOT teed off the supply line to another engine/generator.

Keep the fuel lines as far as possible from the exhaust pipe and hot engine areas; this is to keep the fuel at a minimum temperature to reduce the chance of vapor lock in gasoline installations.

Run fuel lines at the top level of the fuel tank to a point as close to the engine or generator as possible to reduce the danger of fuel siphoning out of the tank if the line should break.

Fuel piping should always be routed and securely anchored to prevent leaks from vibration and chafing. Fuel piping is usually secured by copper straps every 12-14 in (30-36 cm). Use as few connections as possible, and install the lines so they are accessible and protected. Avoid locked-in torsional stresses.

RIGID FUEL LINES

For installations with rigid fuel lines, Westerbeke recommends using copper tubing with suitable flared fittings, both for the supply line and the return line. Use seamless annealed double flared fuel lines that are approved for marine installations. Run the tubing in the longest pieces obtainable to avoid the use of unnecessary fittings and connectors. The minimum size of the fuel supply line and fuel return line is 1/4 inch, inside diameter.

When a copper fuel line is used, electrically bond the fuel line to the vessel’s common bonding conductor with a suitable strap or 10 gauge wire.

FLEXIBLE FUEL LINES

If a rigid metallic fuel line is run into the engine/generator compartment, a length of flexible hose must be installed to absorb vibration from the engine/generator. Install a non-organic flexible hose without metal reinforcement between the rigid fuel line and the engine/generator to absorb the vibration. This line must be long enough to prevent binding or stretching because of engine/generator movement.

A flexible fuel line may also be installed between the fuel tank and the engine/generator for both the supply line and the return line. For the supply line, flexible hose may be installed from the fuel tank outlet to the fuel filter/water separator, and from the fuel filter/water separator to the engine-mounted fuel pump inlet.

Use suitable end fittings, and install all the hose in the longest runs possible to avoid the use of unnecessary fittings and connectors. There must not be an electrical connection between the hose end fittings as a bad ground in the cranking circuit will cause a wire-reinforced hose to become charged and ignite the fuel during cranking.

WARNING: Ignition of fuel can cause fire and severe personal injury or death. Be sure any flexible fuel line used between the fuel tank and the engine/generator meets ABYC and USCG requirements.

Refer to the ABYC Standards Section H24 for more detailed information.
FUEL SYSTEM

SHUT-OFF VALVES
Make sure your fuel system has positive shut-off valves; know their locations and how they operate.
NOTE: See the U.S. Coast Guard publication “Fuel System Compliance Guideline” for basic fuel system layouts and shut-off valve locations.

FUEL FILTERS
A primary fuel/water separator should be installed in the fuel supply line between the fuel tank and the engine/generator to help remove contaminants in the fuel before the fuel reaches the engine mounted fuel lift pump. It should be mounted in an accessible location for ease in monitoring for water and contaminates, and for servicing. Such contaminates can cause the failure of components, and such failures are not warrantable. A recommended type of fuel/water separator is available from the list of accessories. A secondary fuel filter is mounted on the engine/generator, and it has a replacement filter element.

After installation, test the fuel system for tightness per USCG specification 33CFR183.542.

FUEL
To insure satisfactory operation, an engine or generator must have a dependable supply of clean fuel.

Diesel Fuel - Use a diesel fuel that meets the requirements of No.2-D SAE J313 and has a Cetane rating of 45 or higher grade of diesel fuel according to ASTM D975.

Gasoline - Use unleaded 89 Octane or higher. Ethanol gasoline must NOT exceed E10 (10%). The use of lower Octane gasoline will affect the performance of the engine.

WARNING: Gasoline leakage in or around the engine/generator compartment is a potential for fire and/or explosions. Repair leaks promptly and ensure that the compartment is properly ventilated.

Make sure there is a fire-extinguisher installed near the engine/generator and that it is properly maintained. Be familiar with its use. An extinguisher with the NFPA rating of ABC is appropriate for all applications.

GASOLINE - E.F.I./SAFE CO MODELS
Primary Fuel Filter/Water Separator
Select a primary filter/water separator that has a flow rating of 30 GPH or greater. The return fuel flow back to the fuel tank can be as much as 30 - 40 GPH.

Return Fuel
The return fuel must be returned at the top of the fuel tank and free fall into the tank. The return fuel connection on the fuel tank must not be extended down into the tank.

Fuel Hose Size
Supply - 1/4” I.D. minimum - 3/8” maximum
Return - 1/4” I.D. minimum - 3/8” maximum

Fuel hose must be Coast Guard approved hose material. Use stainless steel hose clamps when attaching the fuel hose to the fittings on the engine.

E.F.I./LOW CO MODELS
RETURNLESS FUEL SYSTEMS
Primary Fuel Filter/Water Separator
Select a primary Filter/water separator that is Coast Guard approved and having an adequate flow rate for the fuel consumption of the engine operating under full load. The recommended filter micron is 10.
COOLING SYSTEM

RAW WATER INTAKE
Raw water should be supplied to the raw water pump through a standard-type through-hull fitting, located on the hull so as to be below the waterline during all angles of boat operation.

⚠️ CAUTION: Do not use a high speed scoop-type through-hull fitting for the raw water supply for generators and auxiliary sailboat engines as it will tend to encourage siphoning. Water pressure against this type of fitting while the vessel is underway with the generator off or when sailing can push water past the raw water pump impeller and into the exhaust system, filling it and the engine as well.

The raw water should be directed from the through-hull fitting through a seacock, to a visual-type raw water strainer, and then delivered to the pump. The strainer should be of the type that may be withdrawn for cleaning while the vessel is underway, and should be mounted below the waterline to ensure self-priming. Seacocks and strainers should be at least one size greater than the inlet thread of the raw water pump. Hoses routed from the through-hull fitting to the strainer and to the raw water pump should be wire-reinforced to prevent the hose from collapsing during the engine/generator’s operation (suction from the pump may collapse a non-reinforced hose).

Make sure this system is in proper order. Check that the hull inlet, seacock and strainer are unobstructed. Inspect the raw water lines to make sure there are no collapsed sections which would restrict water flow. Make sure there are no air leaks at any of the connections; use double clamps on hose connections below the waterline.

Be sure that the raw water intake is clear of any cavitation created by the propellers.

The raw water intake to the engine or generator should be separate and not combined with any other inlet for the main engine(s) or air conditioners. The use of “sea chest” intakes is permissible but they must be engineered to provide an adequate supply of water for all equipment connected to them.

A through-hull fitting that is completely flush with the surface of the boat’s hull and without an external strainer may be necessary for the generator raw water intake on very high-speed boats. The protrusion of a standard type through-hull fitting and a strainer can cause a venturi effect on the intake of a high speed boat, creating a suction which works against the raw water pump causing an inadequate supply of cooling water to the engine.

⚠️ CAUTION: On some extremely high-speed boats, the use of a sea scoop type strainer may be necessary to provide an adequate supply of cooling to the generator when the boat is underway. If this is necessary, the exhaust piping from the generator must have a continuous downward pitch to the outlet at the transom so that no water can be trapped and back-up into the engine. A solenoid operated shut-off valve can also be installed in the raw water supply to the raw water pump and wired to close when the generator is not in operation.

⚠️ CAUTION: Water intrusion into the engine through the exhaust system is not covered by warranty.

If a generator set is located above the waterline of the boat, it is good practice to provide a loop or loops above the inlet of the raw water pump in the raw water supply hose from the raw water strainer. The loop(s) provide a head of water on the raw water pump which, on start-up, lubricates the pump impeller until the pump starts drawing water from the intake.

RAW WATER OUTLET
Wire-reinforced flexible hose should be used between the raw water outlet on the heat exchanger and the exhaust system. This reduces vibration and permits the engine to be moved slightly when it’s being realigned.

FITTINGS
All pipe and fittings should be of bronze. Use sealing compound or tape at all connections to prevent air leaks. The neoprene impeller in the raw water pump should never be run dry. All hose joints should be double clamped with 304/306 stainless-steel hose clamps. T-bolt clamps are even better but must be 304/306 stainless.

⚠️ CAUTION: The use of common street elbows is not recommended in plumbing the raw water circuit. These generally have a very restrictive inside diameter. The use of machine-type fittings is preferred.
COOLING SYSTEM

COOLANT RECOVERY TANK

A coolant recovery tank kit is supplied with each WESTERBEKE engine/generator. The purpose of this recovery tank is to allow for engine coolant expansion and contraction during engine operation, without the loss of coolant and without introducing air into the cooling system.

This coolant recovery tank should be installed at or above engine manifold level, in a location where it can be easily monitored. A wire mounting bracket is supplied with each kit, along with a 30 in (76 cm) length of clear plastic hose and clamps, to connect the hose between the engine's manifold fitting and the hose spud on the base of the recovery tank.

COOLANT

WESTERBEKE recommends the use of a pre-mixed antifreeze both for gasoline and diesel engine cooling systems. This will ensure that when antifreeze needs to be added, the correct mixture will be added.

For Diesel engine cooling systems, Premixed Extended Life Heavy Duty Diesel Antifreeze is recommended. This is specifically formulated to help prevent cavitation erosion of the cylinder walls of the diesel engine.

When pre-mixed is not available, select a well known brand and mix 50/50. 50% antifreeze and 50% distilled water. Thoroughly mix the two before adding it to the cooling system.
ENGINE OIL

OIL SPECIFICATIONS
Refer to your Westerbeke Operator’s Manual for the oil specifications for your engine/generator.

OIL DRAIN HOSE
An oil sump drain hose is located at the front or side of the engine. Oil may be drained from this hose by removing the cap and the discharge end of the hose from its mounting bracket and lowering the hose into a container. The hose cap fitting is 1/4” NPT and it can be extended, or have a pump added, for easier removal of the old oil.

When installing the engine make certain that this drain hose is accessible and that the drain hose fitting at the bottom of the engine oil pan is well clear of the boat’s oil pan.

OIL DIPSTICK
If the engine is going to be mounted at an angle (instead of level), it’s a good idea to add the proper amount of lube oil to the engine and check the dipstick before installation, with the engine level. After installation, check the dipstick to see where the oil now rests, and mark the dipstick at this point for future reference.

PRESSURE SENSING DEVICES
Oil pressure sensing devices, such as senders and switches, must not be connected to an engine’s oil gallery with the use of extended nipples or tees. The reason is simply that continued engine vibration causes fatigue of the fittings used to make such a connection. If these fittings fail during engine operation, lubricating oil will be lost and internal engine damage will result.

When additional sensing devices such as switches or sensors need to be installed that function on engine oil pressure, these devices must be bulkhead-mounted and connected to the oil gallery using an appropriate grade of lubricating oil hose. Any fittings used to connect the hose to the gallery must be of steel or malleable iron composition. Brass must not be used for this application.

RELOCATING ENGINE PARTS
Any reassembly or relocation of engine parts such as fuel filters, dipstick, senders and switches to accommodate a restricted engine space must be authorized by the WESTERBEKE Corporation and the work must be performed by a WESTERBEKE approved mechanic or the engine’s warranty will be void. The oil filter can be relocated to a convenient bulkhead location by using a WESTERBEKE Remote Oil Filter kit.

NOTE: Oil filter assemblies vary with each engine model, switches, senders, coolers, etc. are shown in detail in all Operators Manuals.
REMOTE OIL FILTER

INSTALLATION

This popular accessory is used to relocate the engine’s oil filter from the engine to a more convenient location such as an engine room bulkhead.

NOTE: Refer to ENGINE OIL CHANGE in this manual for instructions on removing the oil filter.

To install, simply remove the engine oil filter and thread on WESTERBEKE's remote oil filter kit as shown. Always install this kit with the oil filter facing down as illustrated. Contact your WESTERBEKE dealer for more information.

NOTE: Westerbeke is not responsible for engine failure due to incorrect installation of the Remote Oil Filter.

CAUTION: It is vital to install the oil lines correctly. If the oil flows in the reverse direction, the bypass valve in the filter assembly will prevent the oil from reaching the engine causing an internal engine failure. If there is no oil pressure reading, shutdown immediately and check the hose connections.

APPLY A THIN COAT OF CLEAN OIL TO THE O-RING WHEN INSTALLING THIS KIT. THREAD THE KIT ON, THEN HAND TIGHTEN AN ADDITIONAL 3/4 TURN AFTER THE O-RING CONTACTS THE BASE.

FASTEN SECURELY TO A BULKHEAD. (SCREWS ARE OWNER SUPPLIED)

THE IN CONNECTION HOSE MUST ATTACH TO THE OUT CONNECTION AT THE REMOTE OIL FILTER.

THE OUT CONNECTION HOSE MUST ATTACH TO THE IN CONNECTION AT THE REMOTE OIL FILTER.

APPLY A THIN COAT OF CLEAN OIL TO THE FILTER GASKET WHEN INSTALLING. AFTER THE FILTER CONTACTS THE BASE, TIGHTEN IT AN ADDITIONAL
The ventilation requirements of the engine or generator include the following: combustion air is required for the engine’s cylinders, and cooling air is required for the engine and generator electrical end and also for removing the heat produced during operation.

⚠️ WARNING: Ventilating air is required to clear the bilges, as well as the compartment in which the engine or generator is located, of potentially toxic and flammable vapors.

Keep in mind that hot air rises, so heated air should be removed from the upper area of the engine or generator compartment and cool fresh air should be directed to the lower areas of the compartment. Ventilation should be accomplished with the aid of power ventilation especially when the vessel is not underway. Power ventilation incorporates a powered exhaust blower to draw air from the compartment and discharge to the atmosphere. The exhaust blower must meet a specific capacity rating based on compartment volume. The graph below is used to calculate the required capacity.

NOTE: See your Operators Manual for the ventilation requirements of your generator. Refer to the ABYC standards and U.S. Coast Guard regulations for ventilation requirements on both engines and generators.

NOTE: Forced ventilation should be provided to maintain generator/engine compartment temperatures below 122°F (50°C).

Reference ABYC Standards H-2 and H-32 for more detailed information regarding ventilation for boats using gasoline and boats using diesel.
WATER HEATER CONNECTIONS

INSTALLATION

Water heater hose connections vary from one engine to another. Refer to your WESTERBEKE Operators Manual for your engine’s water heater connections.

NOTE: Water heater connections are not standard on marine generator products.

WESTERBEKE marine engines are equipped with connections for the plumbing of engine coolant to heat an on-board water heater. The water heater should be mounted in a convenient location either in a high or low position in relation to the engine, so that the connecting hoses from the heater to the engine can run in a reasonably direct line without any loops which might trap air.

Hoses should rise continuously from their low point at the heater to the engine so that air will rise naturally from the heater to the engine. If trapped air is able to rise to the heater, then an air bleed petcock must be installed at the higher fitting on the heater for bleeding air while filling the system.

NOTE: If any portion of the heating circuit rises above the engine’s closed cooling system pressure cap, then a pressurized (aluminum) remote expansion tank must be installed in the circuit to become the highest point. Tee the remote expansion tank into the heater circuit, choosing the higher of the two connections for the return. Tee at the heater, and plumb a single line up to the tank’s location and the other back to the engine’s return. Install the remote expansion tank in a convenient location so the fresh water coolant level can easily be checked. The remote expansion tank will now serve as a check and system fill point. The plastic coolant recovery tank is not used when the remote expansion tank kit is installed, since this tank serves the same function. The remote expansion tank has an overflow fitting that should be directed by a hose to an area where any overflow will not cause damage.

REMOTE EXPANSION TANK

The pressure cap on the engine’s manifold should be installed after the engine’s cooling system is filled with coolant. Finish filling the cooling system from the remote tank after the system is filled and is free of air and exhibits good coolant circulation. During engine operation, checking the engine’s coolant should be done at the remote tank and not at the engine manifold cap. The hose connection from the heater to the remote expansion tank should be routed and supported so it rises continuously from the heater to the tank, enabling any air in the system to rise up to the tank and out of the system.

NOTE: Air bleed petcocks are located on the engine’s heat exchanger and on the thermostat housing. Open these petcocks when filling the engine’s fresh water system to allow air in the coolant circuit to escape. Close tightly after all the air is removed.
SHIPMENT

For safety reasons, the transmission is not filled with transmission fluid during shipment and the selector lever is temporarily attached to the actuating shaft.

Before leaving the WESTERBEKE plant, each transmission undergoes a test run, with **Dexron III ATF** transmission fluid. The residual fluid remaining in the transmission after draining acts as a preservative and provides protection against corrosion for at least one year if properly stored.

TRANSMISSION FLUID

Fill the transmission with **Dexron III ATF**. The fluid level should be up to the mark on the dipstick. After checking the level, press the dipstick into the case and turn it to tighten. During the first 25 operating hours, inspect the bell housing, output shaft and transmission cooler for leakage. The fluid should be changed following the Maintenance Schedule found in this model's Operators Manual.

NEUTRAL SAFETY SWITCH

Hydraulic transmissions are equipped with a neutral safety switch. This is to prevent the engine from being started while in gear. The shift lever MUST be in the neutral position for the starter to be energized.

CONNECTION OF GEAR BOX WITH PROPELLER

Use a flexible connection between the transmission gearbox and the propeller shaft if the engine is flexibly mounted, in order to compensate for angular deflections. The installation of a special propeller thrust bearing is not required, since the propeller thrust will be taken by the transmission bearing, provided the value specified under **SPECIFICATIONS** is not exceeded. However, the output shaft should be protected from additional loads. Special care should be taken to prevent torsional vibration. When using a universal joint shaft, make certain to observe the manufacturers instructions.

Even with the engine solidly mounted, the use of flexible coupling or **"DRIVESAVER"** will reduce stress in the gearbox bearings caused by hull distortions, especially in wooden boats or where the distance between transmission output flange and stern gland is less than about 800mm.

NOTE: **"DRIVESAVER"** is a product of Globe Marine, Rockland, MA.

CONTROL CABLES

NOTE: When installing the transmission, make certain that shifting is not impeded by restricted movability of the Bowden cable or rod linkage, by unsuitably positioned guide sheaves, too small a bending radius, etc. In order to mount a support for shift control cable connections, use the two threaded holes located above the shift cover on top of the gear housing. Refer to the WESTERBEKE parts list.

The transmission is suitable for single lever remote control. Upon loosening the retaining screw, the actuating lever can be moved to any position required for the control elements (cable or rod linkage). Make certain that the shift lever does not contact the actuating lever cover plate: the minimum distance between lever and cover should be 0.5mm.

The control cable or rod should be arranged at right angle to the actuating shift lever when in the neutral position. The neutral position of the operating lever on the control console should coincide with the neutral position of this lever.

The shifting travel, as measured at the pivot point of the actuating lever, between the neutral position and end positions **A** and **B** should be at least **35mm** for the outer and **30mm** for the inner pivot point.

A greater amount of shift lever travel is in no way detrimental and is recommended. However, if the lever travel is shorter, proper clutch engagement might be impeded which, in turn, would mean premature wear, excessive heat generation and clutch plate failure. This would be indicated by slow clutch engagement or no engagement at all.

NOTE: Check for proper lever travel at least each season.

*ZF Industries
Marine US Headquarters
3131 SW 42nd Street
Fort Lauderdale, FL 33312
Tel.: (954) 581-4040
Fax: (954) 581-4077
WWW.ZF-MARINE.COM
TRANSMISSIONS

BORG WARNER VELVET DRIVE

Check the transmission fluid level on the dipstick. If the transmission has not been filled, fill with Dextron III and continue to use this fluid. During the first 50 hours of operation, keep a lookout for any leakage at the bell housing, output shaft, and transmission cooler. This fluid should be changed after the first 50 hours and approximately every 1000 operating hours or at winter lay-up.

NOTE: Some transmissions are equipped with a neutral safety switch. Unless the transmission shift lever is perfectly aligned in neutral the engine starter will not activate.

Shift Lever Position

The shift control handle and linkage must position the shift lever on the transmission exactly in Forward (F), Neutral (N), and Reverse (R) shifting positions. A detent ball located behind the transmission shift lever must work freely to center the lever in each position. The shift control positions at the helm(s) must be coordinated with those of the Velvet Drive shift lever through shift mechanism adjustments. An improperly adjusted shift mechanism can cause damage to the transmission. The shifting mechanism and transmission shift lever should be free of dirt to ensure proper operation.

NOTE: Do not remove the detent ball!

NOTE: If the boat moves backwards with the selector control in the forward position, shut off the engine! This problem may be the result of incorrect movement of the shift lever by the shift control.

Shifting Into Gear

Place the transmission selector control in Neutral before starting the engine. Shifting from one selector position to another selector position may be made at any time below 1000 rpm and in any order. Shifts should be made at the lowest practical engine speed. Start the engine and set the throttle at idle speed; allow the transmission fluid to warm up for a few minutes.

Neutral

Move the shift control handle to the middle position. You should feel the detent. The shift lever on the transmission is in the forward position. The output shaft and the propeller shaft move the boat in a forward direction.

Forward

Move the shift control handle to the forward position. You should feel the detent. The shift lever on the transmission is in the forward position. The output shaft and the propeller shaft move the boat in a forward direction.

Reverse

Move the shift control handle to the reverse position. You should feel the detent. The shift lever on the transmission is in the reverse position. The output shaft and the propeller shaft move the boat in a reverse direction (astern).

NOTE: Moving the transmission shift lever from Neutral Position to Forward is always towards the engine. Reverse is always away from the engine.

NOTE: Be aware of any unusual noises or vibrations and investigate to determine the cause.

NOTE: Low engine idle rpm can produce damper plate and gear box chatter/rattle. This is the result of unstable rotation through the damper plate and the gear box. Increase the idle rpm until this chatter/rattle is eliminated.

Refer to your transmission manufacturer’s operator’s manual for more detailed information on installation and operation.

For additional information on throttle and shift controls contact Edson International, New Bedford, Massachusetts.
PRM NEWAGE TRANSMISSIONS
MODELS 80 AND 120

THE MODEL 120 HAS A BREATHER FITTING ON THE TOP OF THE CASE

NOTE: When changing the fluid, take care not to lose the drain plug sealing washer. The drain plug will leak without this sealing washer.

WARNING: Never pull out the dipstick while the engine is running. Hot fluid will splash from the dipstick hole. This could cause severe burns.

DAILY OPERATION

- Check the transmission fluid.
- Visually check the gear shift linkage and transmission.
- Start the engine in neutral, allowing a few minutes at idle to warm the fluid.
- Shift into gear.

NOTE: Too low an idle speed will produce a chattering noise from the transmission gear and damper plate. In such cases the idle speed should be increased.

GEAR SHIFTING

The engine must be at idle. Pause in neutral before selecting ahead or astern. Transmission models PRM 80 and 120 are ideal for single lever controls, controlling both the throttle and the gear shift at one time.

WARNING: When shifting gears, bring the engine throttle to idle and pause in neutral before shifting ahead or astern.

LOCKING THE PROPELLER

Locking of the propeller shaft by an additional brake is not required. Use the gear shift lever position opposite your direction of travel for this purpose. Never put the gear shift in the position corresponding to the direction of travel of the boat.

WHEN UNDER SAIL OR BEING TOWED

Rotation of the propeller without a load, such as when the boat is being sailed, being towed or anchored in a river, as well as operation of the engine with the propeller stopped (for charging the battery), will have no detrimental effects on the transmission.

INITIAL OPERATION

Remove the dipstick and fill the gear box with automatic transmission fluid (ATF) DEXTRAN III. Fill the transmission with the recommended capacity of fluid.
Model PRM 80-1.0 U.S. pints (0.6L)
Model PRM 120-1.4 U.S. pints (0.8L)

NOTE: Always clean the area around the dipstick plug before filling with fluid. Replace the dipstick by screwing it down.

Run the engine to warm up the fluid and after shutting down the engine, re-check the fluid level.

CHANGEING THE TRANSMISSION FLUID

Change the fluid for the first time after about 25 hours of operation, then every 250 operating hours or at least once a year or when you change engine fluid. Check for leaks and make a visual inspection of the shift cables and shaft coupling. Push a suction pump hose down through the dipstick hole to the bottom of the housing and suck out the fluid. (If space allows, use the transmission drain). Remove the drain plug from the bottom of the transmission (1" with sealing washer) and allow the fluid to drain into a container, then reinstall the plug with its sealing washer. Wipe down the transmission and properly dispose of the used fluid. After running the engine, shut down and recheck the fluid level.
CONTROL CABLES

The control cable or rod should be arranged at a right angle to the actuating shift lever with the lever in the neutral position. The neutral position of the operating lever in the cockpit must coincide with the neutral position of this lever.

The shift level travel must be such that the lever just strikes the internal stops for the lever when shifted into forward or reverse. Those stops can be determined by manually moving the shift lever with the cable disconnected. This is an important adjustment for proper engagement of the gear. A greater amount of shift lever travel is in no way detrimental and is recommended. However, if the lever travel is shorter, proper clutch engagement might be impeded which, in turn, would mean premature wear, excessive heat generation and clutch plate failure. This would be indicated by slow clutch engagement or no engagement at all.

NOTE: Check for proper lever travel and the security of the cable to the lever bracket at least each season.

MAINTENANCE/SERVICE

Make certain the transmission fluid is changed annually. If the fluid should become contaminated by water or the gearbox suffers major mechanical damage, the gearbox must be thoroughly flushed out and re-filled with fresh fluid to the correct specifications.

NEW AGE TRANSMISSIONS LTD. has distributors around the world. Listed here are those in the United States.

Atlantis Marine Gear Supply Inc.
418 Boston Street
Topfield, MA 01933
Tel: 978-887-0001
Fax: 978-887-5599

Transmission Marine
223 Southwest 33 Court
P.O. Box 21086
Ft. Lauderdale, FL 33335-1086
Tel: 954-467-1540
Fax: 954-467-1525

Hamilton Jet
1111 NW Ballard Way
Seattle, WA 98107
Tel: 206-784-8400
Fax: 206-783-7323

WARRANTY

NEW AGE TRANSMISSIONS LTD. warrants that all PRM Newage Transmissions will be free from defects in material and workmanship under normal use and service for a period of 24 months.

All PRM transmissions must be correctly installed, aligned, and maintained.

If a major problem should occur, contact your WESTERBEKE dealer or a NEWAGE distributor. To avoid prejudicing warranty rights, do not undertake repair work on the gearbox without first contacting NEW AGE TRANSMISSIONS LTD. or a NEWAGE distributor (listed above) or your WESTERBEKE dealer.
FINAL INSTALLATION CHECKS

NOTE: Also refer to PREPARATIONS FOR INITIAL START-UP in your Operator’s Manual.

Before starting the engine or generator complete the following checklist:

- Is there fuel in the tanks and are the fuel valves open.
- Has lube oil been added to the engine.
- Is there transmission fluid in the transmission.
- Has the proper coolant mix been added.
- Are the battery cables properly connected.
- Is the exhaust system secure and all connections tight.
- Is the transmission linkage positioned correctly? Is the gear in Neutral.
- Is the raw water petcock open. Is the raw water pump primed.
- Are the AC and load connection wires securely connected to the circuit breaker.
- Propeller shaft coupling secured to the propeller shaft and the coupling secured to the output flange of the transmission.
- Engine/generator properly secured in its mounting position.
- Issues found during sea trials have been corrected.
- Exhaust back pressure is within specifications.
- Fire suppression/CO monitoring devices have been tested to shut the generator down.
- A dedicated DC battery is connected to the generator and is properly rated (CCA) as recommended in the models specification.
- Adequate room around the unit is available to perform maintenance as specified in the Operators Manual.
- The instrument panels tachometer (propulsion) has been properly calibrated to the engines rpm during sea trials.
- The fuel supply from the fuel tank to the engine has no leaks.

With the engine or generator running, check the following:

- Make certain that water is flowing from the exhaust.
- Check the instrument gauges for proper readings.
- Inspect the engine for fuel, water, coolant, and oil leaks.
- Listen for unusual sounds and vibrations.
- Will the engine shift in and out of gear?
- The engine will reach rated rpm at full open throttle underway in forward gear. Throttle movement is smooth.
- Apply a load to the generator; check the output frequency.

NOTE: See your operator’s manual for the output adjustment.

After shutdown, check the engine or generator carefully. Inspect all fluid levels, check hose clamps, fuel lines, etc.
English to Metric Conversion Chart

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Temperature</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Fahrenheit ('F)</td>
<td>('F-32) ÷ 1.8</td>
<td>Degree Celsius (°C)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Acceleration</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot/second² (ft/sec²)</td>
<td>0.3048</td>
<td>Meter/second² (m/s²)</td>
<td></td>
</tr>
<tr>
<td>Inch/second² (in./sec²)</td>
<td>0.0254</td>
<td>Meter/second² (m/s²)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Torque</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pound-inch (lb-in.)</td>
<td>0.11298</td>
<td>Newton-meters (N·m)</td>
<td></td>
</tr>
<tr>
<td>Pound-foot (lb·ft)</td>
<td>1.3558</td>
<td>Newton-meters (N·m)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Power</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horsepower (hp)</td>
<td>0.746</td>
<td>Kilowatts (kW)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Pressure or Stress</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches of water (in. H₂O)</td>
<td>0.2491</td>
<td>Kilopascals (kPa)</td>
<td></td>
</tr>
<tr>
<td>Pounds/square in. (lb/in.²)</td>
<td>6.895</td>
<td>Kilopascals (kPa)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Energy or Work</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Thermal Unit (Btu)</td>
<td>1055</td>
<td>Joules (J)</td>
<td></td>
</tr>
<tr>
<td>Foot-pound (ft·lb)</td>
<td>1.3558</td>
<td>Joules (J)</td>
<td></td>
</tr>
<tr>
<td>Kilowatt-hour (kW·hr)</td>
<td>3,600,000, or 3.6 x 10⁶</td>
<td>Joules (J = one W/s)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Light</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foot candle (fc)</td>
<td>1.0764</td>
<td>Lumens/meter² (lm/m²)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Fuel Performance</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles/gal (mile/gal)</td>
<td>0.4251</td>
<td>Kilometers/liter (km/L)</td>
<td></td>
</tr>
<tr>
<td>Gallon/mile (gall/mile)</td>
<td>2.3527</td>
<td>Liter/kilometer (l/km)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Velocity</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles/hour (mile/hr)</td>
<td>1.6093</td>
<td>Kilometers/hour (km/hr)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Length</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch (in.)</td>
<td>25.4</td>
<td>Millimeters (mm)</td>
<td></td>
</tr>
<tr>
<td>Foot (ft)</td>
<td>0.3048</td>
<td>Meters (m)</td>
<td></td>
</tr>
<tr>
<td>Yard (yd)</td>
<td>0.9144</td>
<td>Meters (m)</td>
<td></td>
</tr>
<tr>
<td>Mile (mile)</td>
<td>1.609</td>
<td>Kilometers (km)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Area</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch² (in.²)</td>
<td>6452</td>
<td>Millimeters² (mm²)</td>
<td></td>
</tr>
<tr>
<td>Inch² (in.²)</td>
<td>6.45</td>
<td>Centimeters² (cm²)</td>
<td></td>
</tr>
<tr>
<td>Foot² (ft²)</td>
<td>0.0929</td>
<td>Meters² (m²)</td>
<td></td>
</tr>
<tr>
<td>Yard² (yd²)</td>
<td>0.8361</td>
<td>Meters² (m²)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Volume</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inch³ (in.³)</td>
<td>16387</td>
<td>Millimeters³ (mm³)</td>
<td></td>
</tr>
<tr>
<td>Inch³ (in.³)</td>
<td>16.387</td>
<td>Centimeters³ (cm³)</td>
<td></td>
</tr>
<tr>
<td>Inch³ (in.³)</td>
<td>0.0164</td>
<td>Liters (L)</td>
<td></td>
</tr>
<tr>
<td>Quart (qt)</td>
<td>0.9464</td>
<td>Liters (L)</td>
<td></td>
</tr>
<tr>
<td>Gallon (gal)</td>
<td>3.785</td>
<td>Liters (L)</td>
<td></td>
</tr>
<tr>
<td>Yard³ (yd³)</td>
<td>0.7646</td>
<td>Meters³ (m³)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Mass</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pound (lb)</td>
<td>0.4536</td>
<td>Kilograms (kg)</td>
<td></td>
</tr>
<tr>
<td>Ton (ton)</td>
<td>907.18</td>
<td>Kilograms (kg)</td>
<td></td>
</tr>
<tr>
<td>Ton (ton)</td>
<td>0.907</td>
<td>Tonnes (t)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiolv</th>
<th>Force</th>
<th>By</th>
<th>To get equivalent number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilogram (kg)</td>
<td>9.807</td>
<td>Newtons (N)</td>
<td></td>
</tr>
<tr>
<td>Ounce (oz)</td>
<td>0.2780</td>
<td>Newtons (N)</td>
<td></td>
</tr>
<tr>
<td>Pound (lb)</td>
<td>4.448</td>
<td>Newtons (N)</td>
<td></td>
</tr>
</tbody>
</table>

Westerbeke

 Engines & Generators

39
WIRE SIZING

CONDUCTOR SIZES FOR 3% DROP IN VOLTAGE

Length of Conductor from Source of Current to Device and Back to Source — Feet

Total Circuit Current in AMPS	10	15	20	25	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	
12 Volts — 3% Drop Wire Sizes (gauge) — Based on Minimum CM Area																				
5	18	16	14	12	10	10	10	8	8	8	6	6	6	0	0	0	0	0	0	
10	14	12	10	10	10	8	8	6	6	6	4	4	4	4	4	4	4	4	4	
15	12	10	10	8	8	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
20	10	10	8	6	6	6	4	4	2	2	2	2	2	2	2	2	2	2	2	
25	8	6	6	6	4	4	2	2	2	2	2	2	2	2	2	2	2	2	2	
30	8	6	6	6	6	4	4	2	2	2	2	2	2	2	2	2	2	2	2	
40	8	6	6	6	4	4	2	2	2	2	2	2	2	2	2	2	2	2	2	
50	6	6	6	4	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
60	6	4	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
70	6	4	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
80	6	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
90	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
100	4	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

CONDUCTOR SIZES FOR 10% DROP IN VOLTAGE

Length of Conductor from Source of Current to Device and Back to Source — Feet

<table>
<thead>
<tr>
<th>Total Circuit Current in AMPS</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Volts — 10% Drop Wire Sizes (gauge) — Based on Minimum CM Area</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>50</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>60</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>70</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>80</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>90</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

Yacht Council

Courtesy American Boating Association, Inc.