ELECTRONIC GOVERNOR

LOW PROFILE GASOLINE GENERATORS
ADJUSTMENT/CALIBRATION and
COMPONENT TROUBLESHOOTING GUIDE

4th EDITION
AUGUST 2016

WESTERBEKE CORPORATION • 150 JOHN HANCOCK ROAD
MYLES STANDISH INDUSTRIAL PARK • TAUNTON MA 02780
WEBSITE: WWW.WESTERBEKE.COM

Member National Marine Manufacturers Association
GOVERNOR SYSTEM COMPONENTS and OPERATION

DESCRIPTION
The Electronic Governor consists of three components, the CONTROLLER, a pc board installed in the control panel. A MAGNETIC PICK-UP (MPU) installed in the bellhousing over the engine flywheel and the linear ACTUATOR mounted on the engine and attached by linkage to the injection pump throttle control.

SYSTEM OPERATION
On start up system DC voltage is supplied to the controller to use for actuator operation. When the starter is energized and the engine cranks, the magnetic pick-up (MPU) that is positioned over the engine’s flywheel ring gear sends a low AC signal to the controller (1.5 - 2.5 AC volts).

The controller interprets this as engine cranking speed and sends a DC voltage to the actuator to operate the carburetor’s throttle arm. The position of the throttle by the actuator has been previously determined by the speed adjustment on the speed controller. The engine carries up to a set speed determined by the AC voltage sent by the MPU.

The speed controller maintains this signal no load to full load by varying the DC voltage to the actuator providing more or less throttle depending on the generator load.

Gain Adjustment
The gain can be adjusted using a small screwdriver. Adjustment should be between 30% and 40% as is required to dampen speed oscillation under load. An adjustment of more than 40% can cause the unit to race (speed up) when the load is removed or go into a hunting mode.

Speed Controller
The speed controller has a green LED indicating power to the controller, a plus and minus speed adjustment (buttons) and a gain adjustment. The green LED blinks when the power is turned on and after it receives a signal from the magnetic pick-up, it blinks at a faster rate.

MAGNETIC PICK-UP [MPU] INSTALLATION
The MPU is installed in the threaded opening on the side of the flywheel bellhousing. This positions the MPU over the teeth of the flywheel ring gear.

Viewing through this opening, manually rotate the engine crankshaft so as to position the flat of one of the ring gear’s teeth directly under the opening. Thread the MPU into the opening until it gently contacts the flat of this tooth (Thread is 3/8” x 24). Back the MPU out of the opening one turn and then lock it in this position with the jam nut. This will position the end of the MPU approximately 0.030 inches away from the flats of the ring gear teeth.

To ensure the MPU is positioned correctly, slowly rotate the crankshaft by 360° by hand to assure there is no physical contact between the MPU and the ring gear teeth. If contact is felt between the MPU and the flywheel teeth, the MPU may be damaged. Remove the MPU and inspect it. Replace if necessary and repeat the above installation procedure.

NOTE: If replacing the Magnetic Pick-Up (MPU) it MUST be replaced without cutting and splicing into the existing wiring cable. Doing so will cause a erratic AC signal to the controller.

GOVERNOR CIRCUIT VOLTAGES
Monitoring the voltages found in the electronic governor’s circuit will be helpful in determining where in the circuit the operating fault lies and with which component.

The circuit voltages listed with the circuit “wiring schematic” are the approximate voltages found in the governor circuit with the unit running at idle and at normal 1800rpm.

The electronic governor’s circuit voltages can all be read and monitored from the connections on the 12 position terminal strip as illustrated.
PANEL COMPONENTS/WIRING

ELECTRONIC SPEED CONTROLLER PN 046945
NOTE: For wiring connection refer to the diagram below:

OVERSPEED PC BOARD
PN: 056075 - 60/50 Hz
NOTE: For wiring connection refer to the diagram below.

SPEED ACTUATOR PN 046490
3.0 - 3.2 OHM

MAGNETIC PICK-UP (MPU) PN 046874
950 - 1000 OHM

WIRING SCHEMATIC

NOMINAL VOLTAGES at IDLE and 1800 RPM

IDLE (700-800 rpm)

<table>
<thead>
<tr>
<th>TERMINALS</th>
<th>VOLTAGES</th>
<th>NOTE: SPEED IS ADJUSTED USING INC/DEC PODS ON THE CONTROLLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7 → #6</td>
<td>1.5 - 2.5 VAC</td>
<td></td>
</tr>
<tr>
<td>#9 → #8</td>
<td>5.0 - 5.5 DC</td>
<td></td>
</tr>
<tr>
<td>#10 → #11</td>
<td>6.5 - 7.0 DC</td>
<td></td>
</tr>
<tr>
<td>#16 → #16</td>
<td>12.2 DC</td>
<td></td>
</tr>
</tbody>
</table>

1800 RPM

<table>
<thead>
<tr>
<th>TERMINALS</th>
<th>VOLTAGES</th>
<th>NOTE: SPEED IS ADJUSTED USING INC/DEC PODS ON THE CONTROLLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7 → #6</td>
<td>4 - 7 AC</td>
<td></td>
</tr>
<tr>
<td>#9 → #8</td>
<td>5.5 - 6.5 DC</td>
<td></td>
</tr>
<tr>
<td>#10 → #11</td>
<td>6.0 - 6.5 DC</td>
<td></td>
</tr>
<tr>
<td>#16 → #16</td>
<td>13.1 DC</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: SPEED IS ADJUSTED USING INC/DEC PODS ON THE CONTROLLER
CARBURETOR - LOW PROFILE

CARBURETOR
The carburetor is a single barrel, side-draft type with a cleanable metal screen air intake filter/spark arrester.

Air Screen
The air screen can easily be removed. Clean after the first 50 hours of operation and every 100 hours from then on. Clean the air screen in a water soluble cleaner such as GUNK.

CHOKE SOLENOID
The choke solenoid is a 12 volt DC operated unit that functions to close the choke plate in the carburetor when the ON switch is depressed during engine start-up.

The choke solenoid de-energizes once the engine starts and the ON switch is released. Some unstable running may be present when the engine starts cold but should smooth out as the engine reaches operating temperature.

Confirm Proper Operation
Start the engine and allow the engine to warm up. Once warm, engage the ON switch. If the engine chokes and stops, the choke linkage needs to be lengthened to hold the choke open slightly more. If the engine slows but continues to run, the adjustment is ok.

Linkage Adjustment
Adjust the linkage so that when the choke solenoid is energized, the choke butterfly/lever is open approximately 1/16". Adjust the linkage so the pin hole in the linkage is approximately 1/16" beyond the fully closed choke lever. Then connect the choke lever to the linkage. Refer to the IDLE MEASURE ADJUSTMENT at the top of this page.

Speed Actuator Adjustment
The speed actuator adjustment should be the only device in control of the throttle’s position. The throttle linkage’s eye bolts must be 2 5/8” apart (see illustration). The throttle should be in full fuel position when the unit is shutdown.
BATTERY CHARGE CONTROLLER

THE CHARGING SYSTEM

Westerbeke's low profile generators are equipped with a battery charge controller that is powered from a separate winding in the generator. The battery charger controller is an encapsulated, solid-state unit that supplies a DC charging voltage to the generator's starting battery while the generator is operating.

Charging Voltage: 13.0 - 13.1 Volts DC
Charging Amperage: 0 - 12 Amps DC

NOTE: The battery charging circuit is totally separate from the AC output of the generator. The generator output affects the circuits output, but not the reverse.

A separate group of stator windings supplies AC voltage to a bridge rectifier which converts the AC current to supply the charging unit. The unit senses the needs of the starting battery and supplies a DC charge when one is needed. If you suspect that the unit is faulty (if the battery’s charge is low), check the charging circuit and its components (see TESTING THE BATTERY CHARGER). Check all connections for cleanliness and tightness including the ground before replacing the I.C. charger.

NOTE: When the generator is first started, the charger will produce a low charging rate. This charging rate will rise as the generator is operated.

Fuse Protection

There are two 30 amp fuses protecting the DC charge circuit. One 30 amp buss fuse mounted on the control panel box and a spade type automotive 30 amp fuse in a holder adjacent to the starter motor. Anytime there is an overspeed issue, both of these fuses should be checked.

Testing the Battery Charger (PN: 038469)

To test the battery charger, put a multimeter between the positive (+) and negative (-) leads to the battery. It should indicate 13.0V to 13.1V with the engine running. If only the battery voltage is indicated, check that the battery charger terminal connections are tight. With the unit running, test between the (+) and (-) on the battery charger (as illustrated) for 13.0V to 13.1V. If no charge is indicated, replace the charger.

Use of a dedicated and isolated starting battery is strongly recommended.

Fuse - Integral Controller Winding: No Time Delay

FUSE - INTEGRAL CONTROLLER WINDING: NO TIME DELAY

P# 43634 30A 250V MDA-30

Fuse - Integral Controller Winding: No Time Delay

P# 43634 30A 250V MDA-30

NOTE: On some models the battery charge controller is mounted at this end of the control box.
ELECTRONIC GOVERNOR TROUBLESHOOTING

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>TEST/CHECK</th>
<th>CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit starts, then overspeeds and shuts down.</td>
<td>1. Check DC voltage between terminal #12 and + connection on hourmeter when ON switch is depressed.</td>
<td>1. Charge starting battery. Start unit, troubleshoot battery, charge circuit.</td>
</tr>
<tr>
<td>NOTE: When troubleshooting manually operate the throttle to prevent an overspeed by disconnecting the throttle from the actuator and operate the throttle manually at 1800rpm.</td>
<td>2. Check the AC signal from the MPU while cranking, voltage should be 1.5 - 2.5 VAC.</td>
<td>2. Check the MPU resistance value and positioning. Adjust and replace as needed.</td>
</tr>
<tr>
<td></td>
<td>3. Check the actuator.</td>
<td>3. Check the resistance value. Apply 12VDC across leds. Should fully retract. Replace as needed.</td>
</tr>
<tr>
<td></td>
<td>4. Check the controller.</td>
<td>4. Manually control unit. Start and check DC voltage between #9 and #8, between #11 and #10. Replace controller or O/S board as needed.</td>
</tr>
<tr>
<td>Unit starts, runs at idle.</td>
<td>1. Incorrect speed adjustments.</td>
<td>1. Check and adjust speed adjustment.</td>
</tr>
<tr>
<td>NOTE: Less than one volt DC found between terminals #9 and #8 and high DC voltage-10 volts or higher between terminals #11 and #10 indicated a faulty controller.</td>
<td>2. Faulty governor controller.</td>
<td>2. Check DC voltages from controller to O/S board and O/S board to actuator.</td>
</tr>
<tr>
<td>Actuator hunts during operation.</td>
<td>1. Improper controller adjustment.</td>
<td>1. Lessen GAIN adjustment.</td>
</tr>
<tr>
<td>NOTE: Check carburetor adjustments before proceeding.</td>
<td>2. Linkage or rod end bearings are sticking or binding.</td>
<td>2. Lubricate and replace as needed.</td>
</tr>
<tr>
<td></td>
<td>3. Inadequate DC supply voltage.</td>
<td>3. Manually stabilize the unit. Check the DC voltage to the controller. Correct as needed.</td>
</tr>
<tr>
<td></td>
<td>4. MPU positioned marginally too far away from the flywheel teeth, giving an erratic AC input signal to the controller.</td>
<td>4. Check the MPU signal. Adjust positioning as needed.</td>
</tr>
<tr>
<td></td>
<td>2. Inverter.</td>
<td>2. Turn off inverter.</td>
</tr>
</tbody>
</table>